The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosine.

Triton X-100-solubilized high-density microsomes from insulin-treated rat adipocytes exhibit a marked increase in serine/threonine and tyrosine kinase activities toward exogenous histone when compared to controls. The insulin-dependent activation of microsomal histone kinase activities occurs within the physiological range of hormone concentrations (ED50 = 0.6 nM). The hormone-enhanced histone phosphorylation by the high-density microsomes appears to be catalyzed by two distinct kinases, based on their differential interaction with wheat germ agglutinin-agarose. The insulin-sensitive serine/threonine kinase is not retained by The insulin-sensitive serine/threonine kinase is not retained by the lectin column, whereas the tyrosine kinase appears to be a glycoprotein as evidenced by its adsorption to the immobilized lectin. The insulin-stimulated serine/threonine kinase exhibits preferential phosphorylation of histone and Kemptide (synthetic Leu-Arg-Arg-Ala-Ser-Leu-Gly) compared to a number of other peptide substrates. The substrate specificity of this serine/threonine kinase shows that it is distinct from the kinases that phosphorylate ribosomal protein S6, casein, phosvitin, ATP citrate lyase, and glycogen synthase and from multifunctional calmodulin-dependent, cAMP- and cGMP-dependent, and Ca2+/phospholipid-dependent protein kinases. Furthermore, 22% of the insulin-sensitive serine/threonine kinase activity can be adsorbed by monoclonal anti-phosphotyrosine antibodies immobilized on agarose. Its adsorption is specifically inhibited by excess free phosphotyrosine but not phosphoserine or phosphothreonine. The data suggest that this insulin-stimulated serine/threonine kinase in adipocyte high-density microsomes is tyrosine-phosphorylated, consistent with the hypothesis that the stimulatory action of insulin on this kinase may be mediated by tyrosine phosphorylation.[1]

References

  1. Insulin stimulates a membrane-bound serine kinase that may be phosphorylated on tyrosine. Yu, K.T., Khalaf, N., Czech, M.P. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
 
WikiGenes - Universities