Biosynthesis of large dense-core vesicles in PC12 cells: effects of depolarization and second messengers on the mRNA levels of their constituents.
mRNA levels of various constituents of large dense-core vesicles were determined in PC12 cells during depolarization and/or in the presence of BayK 8644, forskolin or phorbolester. For the soluble (secretory) proteins of the vesicles the mRNAs of chromogranin A and B, secretogranin II, neuropeptide Y and VGF were analyzed. Depolarization in the presence of BayK induced a strong up-regulation of the messages for chromogranin B, neuropeptide Y and VGF. Addition of forskolin enhanced this response for neuropeptide Y and VGF, phorbolester did the same only for VGF. Partly membrane-bound and membrane-spanning components analyzed were carboxypeptidase H, dopamine beta-hydroxylase and glycoprotein III (clusterin), peptidylglycine alpha-amidating mono-oxygenase and cytochrome b-561, respectively. Changes of mRNAs for these components were in general smaller and delayed. Six days of depolarization caused an up-regulation of glycoprotein III, peptidylglycine alpha-amidating mono-oxygenase and carboxypeptidase H mRNA levels which were not further increased by cyclic AMP and phorbolester. The dopamine beta-hydroxylase message increased after 6 days of depolarization, however, addition of phorbolester reduced this effect. For cytochrome b-561 there was no change after any of the conditions employed. These in vitro results are compared with those obtained for the biosynthesis regulation of large dense-core vesicles under in vivo conditions. It is suggested that in vivo acetylcholine and vasoactive intestinal polypeptide released from splanchnic nerve induce a differential change in the biosynthesis of large dense-core vesicles by acting via calcium and protein kinase A and C.[1]References
- Biosynthesis of large dense-core vesicles in PC12 cells: effects of depolarization and second messengers on the mRNA levels of their constituents. Tschernitz, C., Laslop, A., Eiter, C., Kroesen, S., Winkler, H. Brain Res. Mol. Brain Res. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg