The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Vip  -  vasoactive intestinal peptide

Rattus norvegicus

Synonyms: VIP peptides
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vip


Psychiatry related information on Vip


High impact information on Vip

  • In addition, we have observed by both light and electron microscopy that some VIP- and some ChAT-positive structures in cortex are closely associated with blood vessels [9].
  • Vasoactive intestinal polypeptide (VIP) is present in high concentrations in the cerebral cortex, where it is the putative neurotransmitter of a major intracortical neuronal system [10].
  • Homogenates of cortical tissue contain high-affinity, specific binding sites for VIP as well as an adenylate cyclase system which is sensitive to this peptide [10].
  • As with many of the other peptidergic systems which have been identified in the central nervous system (CNS), it has proved extremely difficult to elucidate the nature and extent of the functional role of VIP in specific brain areas [10].
  • VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion [11].

Chemical compound and disease context of Vip


Biological context of Vip


Anatomical context of Vip


Associations of Vip with chemical compounds


Physical interactions of Vip

  • This suggests that there is a nonbiologically relevant high affinity VIP-binding site within the rat PACAP receptor [23].
  • The observed overlap in the distributions of NPY- and VIP-immunoreactive fibers in these glands further suggests that NPY may interact with VIP to stimulate secretion [28].

Co-localisations of Vip


Regulatory relationships of Vip


Other interactions of Vip

  • The cAMP responses of these receptors generally correlated with the ability of VIP to compete for PACAP radioligand binding with the exceptions for some particular chimeras [23].
  • The most dramatic change in expression occurred for GAL, NPY and VIP mRNAs which all rose rapidly (day 3) from non-detectable levels [34].
  • These observations suggest a central site of action for VIP in OT and AVP release, probably in the hypothalamus [25].
  • NC/CB, NC/CR and NC/VIP double-labeled cells were found in all hippocampal regions, and represented 29%, 24% and 18% of the NC-IR cells, respectively [35].
  • Somatostatin, ENK and VIP were found to be the most dense in the dorsal PBL [36].

Analytical, diagnostic and therapeutic context of Vip

  • Vasoactive intestinal polypeptide (VIP)- and peptide histidine-isoleucine (PHI)-IR fibers in hypophysectomized animals had already contacted portal vessels 5 d after hypophysectomy, and from then on progressively increased in numbers [37].
  • Regulation of VIP and other neuropeptides by c-Jun in sensory neurons: implications for the neuropeptide response to axotomy [17].
  • We blocked c-Jun synthesis by microinjecting antisense oligonucleotides and found that VIP expression, determined by quantitative immunofluorescence, was specifically reduced [17].
  • Since in vitro electrophoretic mobility shift assays showed that a nominal cyclic AMP responsive element (CRE) associated with the rat VIP gene could bind c-Jun-containing transcription factor complexes, we next investigated whether VIP expression in sensory neurons might depend on transcription factor binding to the CRE [17].
  • Using double immunohistochemistry, with VIP as a marker for intrinsic innervation and calcitonin-gene related peptide (CGRP) as a marker for mainly extrinsic innervation, the distribution and localization of PACAP were studied in the rat pancreas [38].


  1. Vasoactive intestinal polypeptide antiserum affects rat prolactin mRNA in 40-day but not 110-day diethylstilbestrol-induced prolactinoma tissue. Maas, D.L., Meier, D.A., Wahle, J.S., Martinson, D.R., Hagen, T.C. Mol. Cell. Neurosci. (1994) [Pubmed]
  2. Autocrine/paracrine action of pituitary vasoactive intestinal peptide on lactotroph hyperplasia induced by estrogen. Gómez, O., Balsa, J.A. Endocrinology (2003) [Pubmed]
  3. Presence and coexistence of putative neurotransmitters in carotid sinus baro- and chemoreceptor afferent neurons. Ichikawa, H., Rabchevsky, A., Helke, C.J. Brain Res. (1993) [Pubmed]
  4. Growth-inhibitory properties of vasoactive intestinal polypeptide. Hultgårdh-Nilsson, A., Nilsson, J., Jonzon, B., Dalsgaard, C.J. Regul. Pept. (1988) [Pubmed]
  5. Neuropeptide control of rat gastric mucosal blood flow. Increase by calcitonin gene-related peptide and vasoactive intestinal polypeptide, but not substance P and neurokinin A. Holzer, P., Guth, P.H. Circ. Res. (1991) [Pubmed]
  6. Long-term enhancement of REM sleep by the pituitary adenylyl cyclase-activating polypeptide (PACAP) in the pontine reticular formation of the rat. Ahnaou, A., Basille, M., Gonzalez, B., Vaudry, H., Hamon, M., Adrien, J., Bourgin, P. Eur. J. Neurosci. (1999) [Pubmed]
  7. Motor activity of vascularly perfused rat duodenum. 2. Effects of VIP, PACAP27 and PACAP38. Yamamoto, H., Kuwahara, A., Fujimura, M., Maeda, T., Fujimiya, M. Neurogastroenterol. Motil. (1999) [Pubmed]
  8. Effects of enhanced cerebrospinal fluid levels of vasopressin, vasopressin antagonist or vasoactive intestinal polypeptide on circadian sleep-wake rhythm in the rat. Kruisbrink, J., Mirmiran, M., Van der Woude, T.P., Boer, G.J. Brain Res. (1987) [Pubmed]
  9. Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Eckenstein, F., Baughman, R.W. Nature (1984) [Pubmed]
  10. A functional role for vasoactive intestinal polypeptide in anterior cingulate cortex. McCulloch, J., Kelly, P.A. Nature (1983) [Pubmed]
  11. VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion. Ahrén, B., Alumets, J., Ericsson, M., Fahrenkrug, J., Fahrenkrug, L., Håkanson, R., Hedner, P., Lorén, I., Melander, A., Rerup, C., Sundler, F. Nature (1980) [Pubmed]
  12. Tissue distribution and innervation pattern of peptide immunoreactivities in the rat pancreas. De Giorgio, R., Sternini, C., Anderson, K., Brecha, N.C., Go, V.L. Peptides (1992) [Pubmed]
  13. Energy metabolism in rat pituitary tumors during stimulation of prolactin by vasoactive intestinal polypeptide and thyrotropin-releasing hormone: a study with nuclear magnetic resonance spectroscopy. Prysor-Jones, R.A., Silverlight, J.J., Jenkins, J.S., Maxwell, R., Griffiths, J.R. Endocrinology (1986) [Pubmed]
  14. VIP and PACAP potentiation of nicotinic ACh-evoked currents in rat parasympathetic neurons is mediated by G-protein activation. Liu, D.M., Cuevas, J., Adams, D.J. Eur. J. Neurosci. (2000) [Pubmed]
  15. Hyperprolactinemia reduces vasoactive intestinal peptide in the anterior pituitary glands of rats. Prysor-Jones, R.A., Silverlight, J.J., Jenkins, J.S. Neurosci. Lett. (1987) [Pubmed]
  16. Hypothyroidism increases vasoactive intestinal polypeptide (VIP) immunoreactivity and gene expression in the rat hypothalamic paraventricular nucleus. Toni, R., Kakucska, I., Mosca, S., Marrama, P., Lechan, R.M. Endocrinology (1992) [Pubmed]
  17. Regulation of VIP and other neuropeptides by c-Jun in sensory neurons: implications for the neuropeptide response to axotomy. Mulderry, P.K., Dobson, S.P. Eur. J. Neurosci. (1996) [Pubmed]
  18. Neuropeptide Y and vasoactive intestinal polypeptide in cerebral arteries of the rat: relationships between innervation pattern and mechanical response. Brayden, J.E., Conway, M.A. Regul. Pept. (1988) [Pubmed]
  19. Effect of pituitary adenylate cyclase activating polypeptide on vasopressin-induced proliferation of aortic smooth muscle cells: comparison with vasoactive intestinal polypeptide. Oiso, Y., Kotoyori, J., Murase, T., Ito, Y., Kozawa, O. Biochem. Cell Biol. (1993) [Pubmed]
  20. Peptide-containing nerve fibers in the stomach wall of rat and mouse. Ekblad, E., Ekelund, M., Graffner, H., Håkanson, R., Sundler, F. Gastroenterology (1985) [Pubmed]
  21. Differential involvement of the Ras and Rap1 small GTPases in vasoactive intestinal and pituitary adenylyl cyclase activating polypeptides control of the prolactin gene. Romano, D., Magalon, K., Ciampini, A., Talet, C., Enjalbert, A., Gerard, C. J. Biol. Chem. (2003) [Pubmed]
  22. Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. Edvinsson, L., Hara, H., Uddman, R. J. Cereb. Blood Flow Metab. (1989) [Pubmed]
  23. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide receptor chimeras reveal domains that determine specificity of vasoactive intestinal polypeptide binding and activation. Hashimoto, H., Ogawa, N., Hagihara, N., Yamamoto, K., Imanishi, K., Nogi, H., Nishino, A., Fujita, T., Matsuda, T., Nagata, S., Baba, A. Mol. Pharmacol. (1997) [Pubmed]
  24. Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Egli, M., Bertram, R., Sellix, M.T., Freeman, M.E. Endocrinology (2004) [Pubmed]
  25. Release of oxytocin and vasopressin by intracerebroventricular vasoactive intestinal polypeptide. Bardrum, B., Ottesen, B., Fahrenkrug, J., Fuchs, A.R. Endocrinology (1988) [Pubmed]
  26. Effects of bright artificial light on monoamines and neuropeptides in eight different brain regions compared in a pigmented and nonpigmented rat strain. Humpel, C., Neudorfer, C., Philipp, W., Steiner, H.J., Haring, C., Schmid, K.W., Schwitzer, J., Saria, A. J. Neurosci. Res. (1992) [Pubmed]
  27. The co-localization of neuropeptides in the submucosa of the small intestine of normal Wistar and non-diabetic BB rats. Pataky, D.M., Curtis, S.B., Buchan, A.M. Neuroscience (1990) [Pubmed]
  28. Target specificity of neuropeptide Y-immunoreactive cranial parasympathetic neurons. Leblanc, G.G., Landis, S.C. J. Neurosci. (1988) [Pubmed]
  29. Peptidergic innervation of the rat Harderian gland. Tsukahara, S., Jacobowitz, D.M. Histochemistry (1987) [Pubmed]
  30. Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: effect of capsaicin. Fahrenkrug, J., Hannibal, J. Neuroscience (1996) [Pubmed]
  31. Antisera to vasoactive intestinal polypeptide inhibit basal prolactin release from dispersed anterior pituitary cells. Hagen, T.C., Arnaout, M.A., Scherzer, W.J., Martinson, D.R., Garthwaite, T.L. Neuroendocrinology (1986) [Pubmed]
  32. Neuropeptide Y and vasoactive intestinal peptide in experimental subarachnoid hemorrhage: immunocytochemistry, radioimmunoassay and pharmacology. Edvinsson, L., Alafaci, C., Delgado, T., Ekman, R., Jansen, I., Svendgaard, N.A., Uddman, R. Acta neurologica Scandinavica. (1991) [Pubmed]
  33. Vasoactive intestinal polypeptide stimulates cholecystokinin secretion in perfused rat duodenum. Funakoshi, A., Nakano, I., Miyazaki, K. Tohoku J. Exp. Med. (1989) [Pubmed]
  34. Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Nahin, R.L., Ren, K., De León, M., Ruda, M. Pain (1994) [Pubmed]
  35. Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons. Martínez-Guijarro, F.J., Briñón, J.G., Blasco-Ibáñez, J.M., Okazaki, K., Hidaka, H., Alonso, J.R. Hippocampus. (1998) [Pubmed]
  36. Neuropeptide and monoamine components of the parabrachial pontine complex. Block, C.H., Hoffman, G.E. Peptides (1987) [Pubmed]
  37. Reorganization of neural peptidergic systems in the median eminence after hypophysectomy. Villar, M.J., Meister, B., Hökfelt, T. J. Neurosci. (1994) [Pubmed]
  38. Pituitary adenylate cyclase-activating polypeptide in intrinsic and extrinsic nerves of the rat pancreas. Hannibal, J., Fahrenkrug, J. Cell Tissue Res. (2000) [Pubmed]
WikiGenes - Universities