The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Splanchnic Nerves

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Splanchnic Nerves


Psychiatry related information on Splanchnic Nerves


High impact information on Splanchnic Nerves


Chemical compound and disease context of Splanchnic Nerves


Biological context of Splanchnic Nerves


Anatomical context of Splanchnic Nerves


Associations of Splanchnic Nerves with chemical compounds


Gene context of Splanchnic Nerves

  • There have been several studies on the affects of age, sodium intake, stress, ACTH, and splanchnic nerve activity on the regulation of adrenal neuropeptide content [28].
  • In view of the findings of other authors: that VIP is released in response to splanchnic nerve stimulation, and that it is specifically localised in the capsular region of the adrenal, it seems most likely that VIP is the major peptide involved in mediating the increased adrenal blood flow following splanchnic nerve stimulation [29].
  • Stimulation of the splanchnic nerves did not affect the basal release of PYY [30].
  • Findings indicate that NPY is co-released with catecholamines under a variety of stimuli, including splanchnic nerve and cholinergic- and nicotinic-receptor activation [31].
  • 4. In hypophysectomized calves, administration of adrenocorticotrophic hormone (ACTH1-24) at a dose of 5 ng min-1 kg-1 reduced the output of adrenal CRF in response to splanchnic nerve stimulation by about 50% (P less than 0.05) [32].

Analytical, diagnostic and therapeutic context of Splanchnic Nerves

  • Transection of the splanchnic nerves almost completely (76%) prevented the reserpine-induced increases in the abundance of NPY mRNA and NPY pre-mRNA, but denervation alone did not affect their steady state levels [33].
  • 6. In contrast to its excitatory effects on peripheral colonic afferent cholinergic nerves, exogenous GABA caused a dose-dependent decrease in [3H]acetylcholine release during electrical stimulation of the central lumbar splanchnic nerves [34].
  • 4. In the presence of atropine, guanethidine, adrenalectomy and section of the greater splanchnic nerves, baclofen produced only a slight enhancement of rhythmic contractions but the large increase in gastric pressure was still present [35].
  • 5. CRF isolated from adrenal venous effluent plasma, collected both at rest and during splanchnic nerve stimulation, was separated by reverse-phase high-pressure liquid chromatography and found to elute in a position identical to that of human 41CRF [32].
  • In order to study the role of the sympathetic nerves in the regulation of glucagon and insulin secretion, the distal stump of the left splanchnic nerve was electrically stimulated at the diaphragmatic level in the anesthetized dog under bilateral ligation of the adrenal veins [36].


  1. Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats. Implications for cardiovascular adaptation to behavioral responses. Unger, T., Becker, H., Petty, M., Demmert, G., Schneider, B., Ganten, D., Lang, R.E. Circ. Res. (1985) [Pubmed]
  2. Adrenal and pancreatic endocrine responses to hypoxia and hypercapnia in the calf. Bloom, S.R., Edwards, A.V., Hardy, R.N. J. Physiol. (Lond.) (1977) [Pubmed]
  3. The origin and possible significance of substance P immunoreactive networks in the prevertebral ganglia and related structures in the guinea-pig. Matthews, M.R., Cuello, A.C. Philos. Trans. R. Soc. Lond., B, Biol. Sci. (1984) [Pubmed]
  4. Sympathetic activation by chronic insulin treatment in conscious rats. Buñag, R.D., Krizsan-Agbas, D., Itoh, H. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  5. Neural mechanisms in the control of blood glucose concentration. Niijima, A. J. Nutr. (1989) [Pubmed]
  6. Adrenal splanchnic innervation modulates adrenal cortical responses to dehydration stress in rats. Ulrich-Lai, Y.M., Engeland, W.C. Neuroendocrinology (2002) [Pubmed]
  7. Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Artalejo, C.R., Ariano, M.A., Perlman, R.L., Fox, A.P. Nature (1990) [Pubmed]
  8. Phorbol ester facilitates 45Ca accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla. Wakade, A.R., Malhotra, R.K., Wakade, T.D. Nature (1986) [Pubmed]
  9. Induction of tyrosine 3-monooxygenase in adrenal medulla: role of protein kinase activation and translocation. Kurosawa, A., Guidotti, A., Costa, E. Science (1976) [Pubmed]
  10. Gastric inflammation triggers hypersensitivity to acid in awake rats. Lamb, K., Kang, Y.M., Gebhart, G.F., Bielefeldt, K. Gastroenterology (2003) [Pubmed]
  11. Splanchnic nerve activation inhibits the increase in duodenal HCO3- secretion induced by luminal acidification in the rat. Jönson, C., Tunbäck-Hanson, P., Fändriks, L. Gastroenterology (1989) [Pubmed]
  12. The role of the autonomic nervous system in the control of glucagon, insulin and pancreatic polypeptide release from the pancreas. Bloom, S.R., Edwards, A.V., Hardy, R.N. J. Physiol. (Lond.) (1978) [Pubmed]
  13. Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Green, T., Dockray, G.J. Neuroscience (1988) [Pubmed]
  14. The cardiovascular effects of quipazine are mediated by peripheral 5-HT2 and 5-HT3 receptors in anaesthetized rats. Vayssettes-Courchay, C., Bouysset, F., Verbeuren, T.J., Laubie, M., Schmitt, H. Eur. J. Pharmacol. (1990) [Pubmed]
  15. Hyperglycemia induced by intracerebroventricular choline: involvement of the sympatho-adrenal system. Gürün, M.S., Ilçöl, Y.O., Taga, Y., Ulus, I.H. Eur. J. Pharmacol. (2002) [Pubmed]
  16. Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla. Kanamatsu, T., Unsworth, C.D., Diliberto, E.J., Viveros, O.H., Hong, J.S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  17. Mechanism of the hypotensive action of anandamide in anesthetized rats. Varga, K., Lake, K.D., Huangfu, D., Guyenet, P.G., Kunos, G. Hypertension (1996) [Pubmed]
  18. Sympathetic nerve activity in conscious renal hypertensive rats treated with an angiotensin converting enzyme inhibitor or an angiotensin II antagonist. Niederberger, M., Aubert, J.F., Nussberger, J., Brunner, H.R., Waeber, B. J. Hypertens. (1995) [Pubmed]
  19. Effect of bilateral splanchnic nerve section on adrenal function in the ovine fetus. Myers, D.A., Robertshaw, D., Nathanielsz, P.W. Endocrinology (1990) [Pubmed]
  20. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland. Montiel, C., López, M.G., Sánchez-García, P., Maroto, R., Zapater, P., García, A.G. J. Physiol. (Lond.) (1995) [Pubmed]
  21. Secretion of catecholamines from adrenal gland by a single electrical shock: electronic depolarization of medullary cell membrane. Wakade, A.R., Wakade, T.D. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. Mizobe, F., Livett, B.G. J. Neurosci. (1983) [Pubmed]
  23. Glucagon, insulin and somatostatin secretion in response to sympathetic neural activation in streptozotocin-induced diabetic rats. A study with the isolated perfused rat pancreas in vitro. Kurose, T., Tsuda, K., Ishida, H., Tsuji, K., Okamoto, Y., Tsuura, Y., Kato, S., Usami, M., Imura, H., Seino, Y. Diabetologia (1992) [Pubmed]
  24. Pancreotone, an inhibitor of pancreatic secretion in extracts of ileal and colonic mucosa. Harper, A.A., Hood, A.J., Mushens, J., Smy, J.R. J. Physiol. (Lond.) (1979) [Pubmed]
  25. Alpha-1 adrenoceptors mediate splanchnic nerve inhibition of pentagastrin-induced gastric acid secretion and mucosal blood flow in rats. Yokotani, K., Osumi, Y. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  26. Evidence that dopaminergic innervation is not involved in the vasodilatation of cat superior mesenteric arterial bed: the role of beta-adrenoceptors and circulating catecholamines. Lonart, G., Gyorgy, L., Doda, M., Vizi, E.S. Circ. Res. (1988) [Pubmed]
  27. Angiotensin-induced hypertension in the rat. Sympathetic nerve activity and prostaglandins. Luft, F.C., Wilcox, C.S., Unger, T., Kühn, R., Demmert, G., Rohmeiss, P., Ganten, D., Sterzel, R.B. Hypertension (1989) [Pubmed]
  28. Adrenal neuropeptides: regulation and interaction with ACTH and other adrenal regulators. Whitworth, E.J., Kosti, O., Renshaw, D., Hinson, J.P. Microsc. Res. Tech. (2003) [Pubmed]
  29. The role of neuropeptides in the regulation of adrenal vascular tone: effects of vasoactive intestinal polypeptide, substance P, neuropeptide Y, neurotensin, Met-enkephalin, and Leu-enkephalin on perfusion medium flow rate in the intact perfused rat adrenal. Hinson, J.P., Cameron, L.A., Purbrick, A., Kapas, S. Regul. Pept. (1994) [Pubmed]
  30. Release of PYY from pig intestinal mucosa; luminal and neural regulation. Sheikh, S.P., Holst, J.J., Orskov, C., Ekman, R., Schwartz, T.W. Regul. Pept. (1989) [Pubmed]
  31. Neuropeptide-Y and Y-receptors in the autocrine-paracrine regulation of adrenal gland under physiological and pathophysiological conditions (Review). Spinazzi, R., Andreis, P.G., Nussdorfer, G.G. Int. J. Mol. Med. (2005) [Pubmed]
  32. Secretion of corticotrophin releasing factor from the adrenal during splanchnic nerve stimulation in conscious calves. Edwards, A.V., Jones, C.T. J. Physiol. (Lond.) (1988) [Pubmed]
  33. Long lasting increase in neuropeptide Y gene expression in rat adrenal gland with reserpine treatment: positive regulation of transsynaptic activation and membrane depolarization. Higuchi, H., Iwasa, A., Yoshida, H., Miki, N. Mol. Pharmacol. (1990) [Pubmed]
  34. Enteric GABA-containing nerves projecting to the guinea-pig inferior mesenteric ganglion modulate acetylcholine release. Parkman, H.P., Stapelfeldt, W.H., Williams, C.L., Lennon, V.A., Szurszewski, J.H. J. Physiol. (Lond.) (1993) [Pubmed]
  35. Modulation of the vagal drive to the intramural cholinergic and non-cholinergic neurones in the ferret stomach by baclofen. Andrews, P.L., Bingham, S., Wood, K.L. J. Physiol. (Lond.) (1987) [Pubmed]
  36. Effect of splanchnic nerve stimulation on glucagon and insulin output in the dog. Kaneto, A., Kajinuma, H., Kosaka, K. Endocrinology (1975) [Pubmed]
WikiGenes - Universities