The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pan-neurotrophin 1: a genetically engineered neurotrophic factor displaying multiple specificities in peripheral neurons in vitro and in vivo.

Pan-neurotrophin 1 (PNT-1) is a synthetic trophic factor engineered by combining active domains of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) into an NT-3 backbone. This molecule was produced in transiently transfected COS cells or in baculovirus-infected insect cells transfected COS cells or in baculovirus-infected insect cells and subsequently purified to homogeneity. Saturation binding in embryonic spinal sensory neurons demonstrated a greater number of high-affinity binding sites for PNT-1 than for its parental molecule NT-3. PNT-1 was shown to efficiently block the chemical crosslinking of NGF, BDNF, and NT-3 to their cognate Trk receptors and to the low-affintiy NGF receptor expressed on neuronal and nonneuronal cells. PNT-1 stimulated survival and proliferation of MG87 fibroblasts expressing either TrkA, TrkB, or TrkC. PNT-1 also promoted survival of a greater number of embryonic dorsal root ganglion neurons than any of the other neurotrophins alone, and its effects were equivalent to a combination of NGF, BDNF, and NT-3. Analysis of receptor-specific neurotrophic activities demonstrated that PNT-1 efficiently rescued TrkA mRNA-containing sympathetic neurons and TrkB and TrkC mRNA-containing sensory neurons from the dorsal root and nodose ganglia. Finally, PNT-1 showed robust retrograde transport to DRG neurons in vivo after injection into the sciatic nerve. Radiolabeled PNT-1 accumulated in small-, medium-, and large-sized neurons. Coinjection with different unlabeled neurotrophins inhibited PNT-1 transport in distinct subpopulations of neurons of different sizes, suggesting that this molecule affects sensory neurons of different modalities. These results indicate that PNT-1 is a potent and multispecific neurotrophic factor that may be useful in the treatment of peripheral neurophathies and nerve damage.[1]

References

  1. Pan-neurotrophin 1: a genetically engineered neurotrophic factor displaying multiple specificities in peripheral neurons in vitro and in vivo. Ilag, L.L., Curtis, R., Glass, D., Funakoshi, H., Tobkes, N.J., Ryan, T.E., Acheson, A., Lindsay, R.M., Persson, H., Yancopoulos, G.D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities