The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

EMD  -  emerin

Homo sapiens

Synonyms: EDMD, Emerin, LEMD5, STA
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of EMD

 

Psychiatry related information on EMD

  • RESULTS: After EMD, rapid eye movement (REM) sleep was nearly totally abolished [6].
  • In view of the only moderate antipsychotic efficacy in acute schizophrenia and the fact that antidepressant and anxiolytic effects were also observed, a clinical investigation of EMD 49980 in affective disorders and in schizophrenia with depression or anergia should be performed [7].
  • Pretreatment with EMD 281014 prevented the DOI-induced increase of waking and light sleep and the reduction of slow wave sleep [8].
  • Psychometric analysis demonstrated that EMD was superior to placebo in regard to general, associative and numeric memory, concentration and attention variability, psychomotor activity, affect and mood, while the Benton test and attention showed opposite findings [9].
  • In a clinical trial of 30 patients suffering from psychovegetative disorders and anxiety neuroses, Mepiprazol (test designation: EMD 16-923; supplier: E. Merck, Darmstadt, FRG) was proven in a treatment period of 14 days to be an effective, well-tolerated medication [10].
 

High impact information on EMD

  • Together with mutations in EMD (refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders [11].
  • We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus [11].
  • The emerin gene, located in human Xq28, is approximately 2 kb in length, is composed of 6 exons and falls within a 219-kb region that has been completely sequenced [12].
  • The high level of genomic detail in this region allowed us to characterize the first complete emerin gene deletion mutation that also involved a partial duplication of the nearby FLN1 gene [12].
  • Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats [12].
 

Chemical compound and disease context of EMD

 

Biological context of EMD

 

Anatomical context of EMD

 

Associations of EMD with chemical compounds

  • Using a collection of 21 clustered alanine-substitution mutations in emerin, the residues required for binding to Btf mapped to two regions of emerin that flank its lamin-binding domain [18].
  • Biochemical fractionation of brain and liver tissues showed that emerin was present in nuclei purified by centrifugation through 65% sucrose and was absent from soluble fractions (post-100,000 g) [24].
  • The emerin gene has been mapped to Xq28 and encodes a 34-kDa serine-rich protein, emerin, which has been localized to the nuclear envelope in a wide variety of tissues, including skeletal and cardiac muscle [25].
  • These studies demonstrate the importance of proline 183 for the proper structure/function of emerin [25].
  • Tyrosine Y-94/Y-95 is located adjacent to a five-residue motif in human emerin, whose deletion has been associated with X-linked Emery-Dreifuss muscle dystrophy [26].
  • Some emerin hyperphosphorylation can be inhibited by the protein kinase Cdelta (PKCdelta) inhibitor rottlerin [27].
 

Physical interactions of EMD

  • Biochemical analysis showed that emerin binds Btf with an equilibrium affinity (KD) of 100 nm [18].
  • GCL co-immunoprecipitates with emerin from HeLa cells [20].
  • MAN1 is an integral protein of the inner nuclear membrane that interacts with nuclear lamins and emerin, thus playing a role in nuclear organization [28].
  • Binding was optimal for full nucleoplasmic dimers of nesprin-1alpha, since nesprin fragments SR1-5 and SR5-7 bound emerin as monomers with affinities of 53 nM and 250 mM, respectively [29].
  • We then used a synthetic flavonoid (EMD) that competitively inhibits binding of T4 to serum TTR and transiently increases serum free T4 to determine the role of choroid plexus TTR and CSF TTR in the transport of T4 from serum to brain [30].
 

Regulatory relationships of EMD

 

Other interactions of EMD

  • The other region, MAN1-N, bound directly to BAF, lamin A, and lamin B1, supporting functional overlap with emerin [22].
  • Proposed MAN1-emerin complexes are discussed in the context of EDMD disease mechanisms and potential in vivo functions [22].
  • Two disease-causing mutations in emerin, S54F and Delta95-99, disrupted binding to Btf [18].
  • The Delta95-99 mutation was relatively uninformative, as this mutation also disrupts emerin binding to lamin A and a different transcription repressor named germ cell-less (GCL) [18].
  • Inhibition by emerin of YT521-B-dependent splice site selection in vivo suggests that the interaction is physiologically significant [32].
 

Analytical, diagnostic and therapeutic context of EMD

References

  1. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a xenopus egg cell-free system. Hirano, Y., Segawa, M., Ouchi, F.S., Yamakawa, Y., Furukawa, K., Takeyasu, K., Horigome, T. J. Biol. Chem. (2005) [Pubmed]
  2. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. Shun, M.C., Daigle, J.E., Vandegraaff, N., Engelman, A. J. Virol. (2007) [Pubmed]
  3. Inner nuclear membrane proteins: functions and targeting. Holmer, L., Worman, H.J. Cell. Mol. Life Sci. (2001) [Pubmed]
  4. Nuclear membrane protein emerin: roles in gene regulation, actin dynamics and human disease. Wilson, K.L., Holaska, J.M., de Oca, R.M., Tifft, K., Zastrow, M., Segura-Totten, M., Mansharamani, M., Bengtsson, L. Novartis Found. Symp. (2005) [Pubmed]
  5. Limb-girdle muscular dystrophy due to emerin gene mutations. Ura, S., Hayashi, Y.K., Goto, K., Astejada, M.N., Murakami, T., Nagato, M., Ohta, S., Daimon, Y., Takekawa, H., Hirata, K., Nonaka, I., Noguchi, S., Nishino, I. Arch. Neurol. (2007) [Pubmed]
  6. Distinct temporal pattern of the effects of the combined serotonin-reuptake inhibitor and 5-HT1A agonist EMD 68843 on the sleep EEG in healthy men. Murck, H., Frieboes, R.M., Antonijevic, I.A., Steiger, A. Psychopharmacology (Berl.) (2001) [Pubmed]
  7. Antipsychotic efficacy of the dopaminergic autoreceptor agonist EMD 49980 (Roxindol). Results of an open clinical study. Klimke, A., Klieser, E. Pharmacopsychiatry (1991) [Pubmed]
  8. Effects of the serotonin 5-HT(2A/2C) receptor agonist DOI and of the selective 5-HT(2A) or 5-HT(2C) receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Monti, J.M., Jantos, H. Eur. J. Pharmacol. (2006) [Pubmed]
  9. Accelerated remission of the alcoholic organic brain syndrome with EMD 21657. Double-blind clinical and psychometric trials. Saletu, M., Grünberger, J., Saletu, B., Mader, R. Arzneimittel-Forschung. (1978) [Pubmed]
  10. Clinical trial of 3-methyl-5-(beta-N'-(N-m-chlorophenylpiperazino)ethyl)-pyrazole dihydrochloride (Mepiprazol) in the therapy of psychovegetative disorders. Pöldinger, W. International pharmacopsychiatry. (1975) [Pubmed]
  11. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Bonne, G., Di Barletta, M.R., Varnous, S., Bécane, H.M., Hammouda, E.H., Merlini, L., Muntoni, F., Greenberg, C.R., Gary, F., Urtizberea, J.A., Duboc, D., Fardeau, M., Toniolo, D., Schwartz, K. Nat. Genet. (1999) [Pubmed]
  12. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Small, K., Iber, J., Warren, S.T. Nat. Genet. (1997) [Pubmed]
  13. The Emery-Dreifuss muscular dystrophy associated-protein emerin is phosphorylated on serine 49 by protein kinase A. Roberts, R.C., Sutherland-Smith, A.J., Wheeler, M.A., Norregaard Jensen, O., Emerson, L.J., Spiliotis, I.I., Tate, C.G., Kendrick-Jones, J., Ellis, J.A. FEBS J. (2006) [Pubmed]
  14. Antibiotic-impregnated heart valve sewing rings for treatment and prophylaxis of bacterial endocarditis. Cimbollek, M., Nies, B., Wenz, R., Kreuter, J. Antimicrob. Agents Chemother. (1996) [Pubmed]
  15. Endothelin-A receptor blockade in porcine pulmonary hypertension. Ambalavanan, N., Philips, J.B., Bulger, A., Oparil, S., Chen, Y.F. Pediatr. Res. (2002) [Pubmed]
  16. Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. Graeven, U., Kremer, B., Südhoff, T., Killing, B., Rojo, F., Weber, D., Tillner, J., Unal, C., Schmiegel, W. Br. J. Cancer (2006) [Pubmed]
  17. Treatment of Parkinson's disease with the partial dopamine agonist EMD 49980. Bravi, D., Davis, T.L., Mouradian, M.M., Chase, T.N. Mov. Disord. (1993) [Pubmed]
  18. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. Haraguchi, T., Holaska, J.M., Yamane, M., Koujin, T., Hashiguchi, N., Mori, C., Wilson, K.L., Hiraoka, Y. Eur. J. Biochem. (2004) [Pubmed]
  19. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Liu, J., Lee, K.K., Segura-Totten, M., Neufeld, E., Wilson, K.L., Gruenbaum, Y. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  20. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. Holaska, J.M., Lee, K.K., Kowalski, A.K., Wilson, K.L. J. Biol. Chem. (2003) [Pubmed]
  21. BAF is required for emerin assembly into the reforming nuclear envelope. Haraguchi, T., Koujin, T., Segura-Totten, M., Lee, K.K., Matsuoka, Y., Yoneda, Y., Wilson, K.L., Hiraoka, Y. J. Cell. Sci. (2001) [Pubmed]
  22. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. Mansharamani, M., Wilson, K.L. J. Biol. Chem. (2005) [Pubmed]
  23. Distribution of emerin and lamins in the heart and implications for Emery-Dreifuss muscular dystrophy. Manilal, S., Sewry, C.A., Pereboev, A., Man, N., Gobbi, P., Hawkes, S., Love, D.R., Morris, G.E. Hum. Mol. Genet. (1999) [Pubmed]
  24. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Manilal, S., Nguyen, T.M., Sewry, C.A., Morris, G.E. Hum. Mol. Genet. (1996) [Pubmed]
  25. Changes at P183 of emerin weaken its protein-protein interactions resulting in X-linked Emery-Dreifuss muscular dystrophy. Ellis, J.A., Yates, J.R., Kendrick-Jones, J., Brown, C.A. Hum. Genet. (1999) [Pubmed]
  26. Identification of tyrosine-phosphorylation sites in the nuclear membrane protein emerin. Schlosser, A., Amanchy, R., Otto, H. FEBS J. (2006) [Pubmed]
  27. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. Leach, N., Bjerke, S.L., Christensen, D.K., Bouchard, J.M., Mou, F., Park, R., Baines, J., Haraguchi, T., Roller, R.J. J. Virol. (2007) [Pubmed]
  28. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. Caputo, S., Couprie, J., Duband-Goulet, I., Kondé, E., Lin, F., Braud, S., Gondry, M., Gilquin, B., Worman, H.J., Zinn-Justin, S. J. Biol. Chem. (2006) [Pubmed]
  29. Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. Mislow, J.M., Holaska, J.M., Kim, M.S., Lee, K.K., Segura-Totten, M., Wilson, K.L., McNally, E.M. FEBS Lett. (2002) [Pubmed]
  30. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Chanoine, J.P., Alex, S., Fang, S.L., Stone, S., Leonard, J.L., Körhle, J., Braverman, L.E. Endocrinology (1992) [Pubmed]
  31. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. Markiewicz, E., Tilgner, K., Barker, N., van de Wetering, M., Clevers, H., Dorobek, M., Hausmanowa-Petrusewicz, I., Ramaekers, F.C., Broers, J.L., Blankesteijn, W.M., Salpingidou, G., Wilson, R.G., Ellis, J.A., Hutchison, C.J. EMBO J. (2006) [Pubmed]
  32. Emerin interacts in vitro with the splicing-associated factor, YT521-B. Wilkinson, F.L., Holaska, J.M., Zhang, Z., Sharma, A., Manilal, S., Holt, I., Stamm, S., Wilson, K.L., Morris, G.E. Eur. J. Biochem. (2003) [Pubmed]
  33. Barrier-to-autointegration factor: major roles in chromatin decondensation and nuclear assembly. Segura-Totten, M., Kowalski, A.K., Craigie, R., Wilson, K.L. J. Cell Biol. (2002) [Pubmed]
 
WikiGenes - Universities