The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

undecylprodigiosin     (5Z)-3-methoxy-5-pyrrol-2- ylidene-2-[(5...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of undecylprodigiosin

 

High impact information on undecylprodigiosin

  • We had previously shown that the drug undecylprodigiosin (UP) blocks human lymphocyte proliferation in vitro [6].
  • A mutant was generated by deleting most of the ORF1 gene that showed an actinorhodine-nonproducing phenotype, while undecylprodigiosin and the calcium-dependent antibiotic were unaffected [7].
  • Disruption of the corresponding atrA gene, which is not associated with any antibiotic gene cluster, reduced the production of actinorhodin, but had no detectable effect on the production of undecylprodigiosin or the calcium-dependent antibiotic [8].
  • In that strain, the transcription of redD and cdaR, encoding the specific activators of the undecylprodigiosin and calcium-dependent antibiotic biosynthetic pathways, respectively, was also increased but to a lesser extent [9].
  • A scbA mutant produced no gamma-butyrolactones, yet overproduced two antibiotics, actinorhodin (Act) and undecylprodigiosin (Red), whereas a deletion mutant of scbR also failed to make gamma-butyrolactones and showed delayed Red production [10].
 

Chemical compound and disease context of undecylprodigiosin

 

Biological context of undecylprodigiosin

  • We report here the existence of a previously unknown gene, afsR2, which is separate from and adjacent to the AfsR-encoding sequence and which, when present at high copy number, (i) stimulates transcription of biosynthetic and regulatory genes in the actinorhodin gene cluster (act), and (ii) stimulates the synthesis of undecylprodigiosin [12].
  • When the mutants were transformed with multicopy plasmids carrying the pathway-specific transcriptional activator genes for either the actinorhodin (ACT) or undecylprodigiosin (RED) biosynthetic pathway, they produced higher levels of antibiotic than the corresponding wild-type control strains [13].
  • The disruption caused delayed antibiotic production (undecylprodigiosin and actinorhodin) and led on further incubation to increased actinorhodin production at high, but not low, cell density [14].
  • The eshA gene mapped near the chromosome end and was not essential for viability, as demonstrated by gene disruption experiments, but its disruption resulted in the abolishment of an antibiotic (actinorhodin but not undecylprodigiosin) production [15].
  • We have studied the molecular biology of undecylprodigiosin (Red) biosynthesis by Streptomyces coelicolor as a model system for understanding the genetic regulation of antibiotic biosynthesis [16].
 

Associations of undecylprodigiosin with other chemical compounds

 

Gene context of undecylprodigiosin

  • Disruption of the S. coelicolor sigG gene appeared to have no obvious effect on growth, morphology, differentiation, and production of pigmented antibiotic actinorhodin and undecylprodigiosin [20].
  • Disruption of the S. coelicolor chiR gene appeared to have no obvious effect on growth, morphology, differentiation, and production of pigmented antibiotic actinorhodin and undecylprodigiosin [21].
  • bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade [22].
  • The ars operon expressed in S. lividans and the arsC gene expressed in S. noursei did not render the synthesis of undecylprodigiosin and nourseothricin, respectively, phosphate-resistant [23].
  • Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2) [2].

References

  1. Characterization of the new immunosuppressive drug undecylprodigiosin in human lymphocytes: retinoblastoma protein, cyclin-dependent kinase-2, and cyclin-dependent kinase-4 as molecular targets. Songia, S., Mortellaro, A., Taverna, S., Fornasiero, C., Scheiber, E.A., Erba, E., Colotta, F., Mantovani, A., Isetta, A.M., Golay, J. J. Immunol. (1997) [Pubmed]
  2. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J., Bibb, M.J. Mol. Microbiol. (1992) [Pubmed]
  3. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Williamson, N.R., Simonsen, H.T., Ahmed, R.A., Goldet, G., Slater, H., Woodley, L., Leeper, F.J., Salmond, G.P. Mol. Microbiol. (2005) [Pubmed]
  4. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. Fernández-Moreno, M.A., Martín-Triana, A.J., Martínez, E., Niemi, J., Kieser, H.M., Hopwood, D.A., Malpartida, F. J. Bacteriol. (1992) [Pubmed]
  5. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Liu, R., Cui, C.B., Duan, L., Gu, Q.Q., Zhu, W.M. Arch. Pharm. Res. (2005) [Pubmed]
  6. New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. Mortellaro, A., Songia, S., Gnocchi, P., Ferrari, M., Fornasiero, C., D'Alessio, R., Isetta, A., Colotta, F., Golay, J. J. Immunol. (1999) [Pubmed]
  7. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. Martínez-Costa, O.H., Arias, P., Romero, N.M., Parro, V., Mellado, R.P., Malpartida, F. J. Biol. Chem. (1996) [Pubmed]
  8. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Uguru, G.C., Stephens, K.E., Stead, J.A., Towle, J.E., Baumberg, S., McDowall, K.J. Mol. Microbiol. (2005) [Pubmed]
  9. The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Chouayekh, H., Virolle, M.J. Mol. Microbiol. (2002) [Pubmed]
  10. A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Takano, E., Chakraburtty, R., Nihira, T., Yamada, Y., Bibb, M.J. Mol. Microbiol. (2001) [Pubmed]
  11. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). Hong, S.K., Kito, M., Beppu, T., Horinouchi, S. J. Bacteriol. (1991) [Pubmed]
  12. afsR2: a previously undetected gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Vögtli, M., Chang, P.C., Cohen, S.N. Mol. Microbiol. (1994) [Pubmed]
  13. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Butler, M.J., Bruheim, P., Jovetic, S., Marinelli, F., Postma, P.W., Bibb, M.J. Appl. Environ. Microbiol. (2002) [Pubmed]
  14. Characterization of spaA, a Streptomyces coelicolor gene homologous to a gene involved in sensing starvation in Escherichia coli. Schneider, D., Bruton, C.J., Chater, K.F. Gene (1996) [Pubmed]
  15. Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. Kawamoto, S., Watanabe, M., Saito, N., Hesketh, A., Vachalova, K., Matsubara, K., Ochi, K. J. Bacteriol. (2001) [Pubmed]
  16. Molecular genetics of Red biosynthesis in Streptomyces. Feitelson, J.S., Sinha, A.M., Coco, E.A. J. Nat. Prod. (1986) [Pubmed]
  17. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. Umeyama, T., Tanabe, Y., Aigle, B.D., Horinouchi, S. FEMS Microbiol. Lett. (1996) [Pubmed]
  18. Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. Wei, Y.H., Chen, W.C. J. Biosci. Bioeng. (2005) [Pubmed]
  19. The prodigiosins: a new family of anticancer drugs. Montaner, B., Pérez-Tomás, R. Current cancer drug targets. (2003) [Pubmed]
  20. A new gene, sigG, encoding a putative alternative sigma factor of Streptomyces coelicolor A3(2). Kormanec, J., Homerová, D., Barák, I., Sevcíková, B. FEMS Microbiol. Lett. (1999) [Pubmed]
  21. Cloning of a two-component regulatory system probably involved in the regulation of chitinase in Streptomyces coelicolor A3(2). Kormanec, J., Sevcíková, B., Homérová, D. Folia Microbiol. (Praha) (2000) [Pubmed]
  22. bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. White, J., Bibb, M. J. Bacteriol. (1997) [Pubmed]
  23. Arsenical resistance of growth and phosphate control of antibiotic biosynthesis in Streptomyces. Hänel, F., Krügel, H., Fiedler, G. J. Gen. Microbiol. (1989) [Pubmed]
 
WikiGenes - Universities