The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Glycylxylidide     2-amino-N-(2,6- dimethylphenyl)ethanamide

Synonyms: CHEMBL1302, SureCN4107220, CHEBI:357241, AC1L3EHZ, AC1Q5LXW, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Glycylxylidide

  • Analogous effects were observed on MEGX and GX formation kinetics, which were drastically impaired in healthy subjects and patients with mild liver cirrhosis but virtually unaffected in patients with severe cirrhosis [1].
  • Patients with renal disease do not have significant alterations in handling the parent compound but, because of the dependence of glycinexylidide elimination on renal function, may accumulate the metabolite and develop central nervous system toxicity [2].
 

High impact information on Glycylxylidide

 

Biological context of Glycylxylidide

  • PATIENTS: Five male patients with cancer who received epidural injection of 1.5% LDC for 5 hours in elective thoracic surgery, were enrolled to determine the plasma levels of total and free LDC, MEGX and GX [8].
 

Anatomical context of Glycylxylidide

  • Untreated microsomes generated MEGX, Me-OH LID, and 3-OH LID, but the formation of GX was not detected [9].
  • MEGX and GX could be measured in the liver, but only MEGX in the small intestine and lung [10].
  • Myocardium to plasma partition coefficients for lidocaine, monoethylglycylxylidide and glycylxylidide were 2.16, 4.27, and 2.91, respectively [11].
 

Associations of Glycylxylidide with other chemical compounds

 

Analytical, diagnostic and therapeutic context of Glycylxylidide

References

  1. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Orlando, R., Piccoli, P., De Martin, S., Padrini, R., Floreani, M., Palatini, P. Clin. Pharmacol. Ther. (2004) [Pubmed]
  2. Pharmacokinetic principles of lidocaine dosing in relation to disease state. Waller, E.S. Journal of clinical pharmacology. (1981) [Pubmed]
  3. Differential effect of chronic renal failure on the pharmacokinetics of lidocaine in patients receiving and not receiving hemodialysis. De Martin, S., Orlando, R., Bertoli, M., Pegoraro, P., Palatini, P. Clin. Pharmacol. Ther. (2006) [Pubmed]
  4. Plasma levels, protein binding, and elimination data of lidocaine and active metabolites in cardiac patients of various ages. Drayer, D.E., Lorenzo, B., Werns, S., Reidenberg, M.M. Clin. Pharmacol. Ther. (1983) [Pubmed]
  5. Maternal, fetal, and neonatal metabolism of lidocaine. Kuhnert, B.R., Knapp, D.R., Kuhnert, P.M., Prochaska, A.L. Clin. Pharmacol. Ther. (1979) [Pubmed]
  6. Pharmacokinetics and metabolism of lidocaine in patients with renal failure. Collinsworth, K.A., Strong, J.M., Atkinson, A.J., Winkle, R.A., Perlroth, F., Harrison, D.C. Clin. Pharmacol. Ther. (1975) [Pubmed]
  7. Pharmacological activity, metabolism, and pharmacokinetics of glycinexylidide. Strong, J.M., Mayfield, D.E., Atkinson, A.J., Burris, B.C., Raymon, F., Webster, L.T. Clin. Pharmacol. Ther. (1975) [Pubmed]
  8. Chromatographic determination of free lidocaine and its active metabolites in plasma from patients under epidural anesthesia. Kakiuchi, Y., Fukuda, T., Miyabe, M., Homma, M., Toyooka, H., Kohda, Y. International journal of clinical pharmacology and therapeutics. (2002) [Pubmed]
  9. Metabolism of lidocaine by purified rat liver microsomal cytochrome P-450 isozymes. Oda, Y., Imaoka, S., Nakahira, Y., Asada, A., Fujimori, M., Fujita, S., Funae, Y. Biochem. Pharmacol. (1989) [Pubmed]
  10. First-pass metabolism of lidocaine in the anesthetized rabbit. Contribution of the small intestine. Lê, K.T., Maurice, H., du Souich, P. Drug Metab. Dispos. (1996) [Pubmed]
  11. Simultaneous determination of lidocaine and its metabolites in plasma and myocardium. Luzzi, F.A., Wenger, T.L., Klinger, J.K., Barchowsky, A., Strauss, H.C. J. Chromatogr. (1984) [Pubmed]
  12. Simultaneous determination of lidocaine and its principal metabolites by liquid chromatography on silica gel, with aqueous eluent. Kushida, K., Oka, K., Suganuma, T., Ishizaki, T. Clin. Chem. (1984) [Pubmed]
  13. Sensitive HPLC for simultaneous quantification of lidocaine and its metabolites monoethylglycinexylidide and glycinexylidide in serum. O'Neal, C.L., Poklis, A. Clin. Chem. (1996) [Pubmed]
  14. Plasma concentrations of lidocaine and its principal metabolites during intermittent epidural anesthesia. Inoue, R., Suganuma, T., Echizen, H., Ishizaki, T., Kushida, K., Tomono, Y. Anesthesiology (1985) [Pubmed]
  15. Propofol does not inhibit lidocaine metabolism during epidural anesthesia. Nakayama, S., Miyabe, M., Kakiuchi, Y., Inomata, S., Osaka, Y., Fukuda, T., Kohda, Y., Toyooka, H. Anesth. Analg. (2004) [Pubmed]
 
WikiGenes - Universities