The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ctcf  -  CCCTC-binding factor (zinc finger protein)

Xenopus laevis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ctcf


High impact information on ctcf


Biological context of ctcf


Anatomical context of ctcf


Other interactions of ctcf


  1. The glucocorticoid receptor precludes the binding of a transcriptional repressor protein to the long terminal repeat of the mouse mammary tumor virus. Ye, S., Kmiec, E.B. Mol. Cell. Biochem. (1993) [Pubmed]
  2. Active repression of RAR signaling is required for head formation. Koide, T., Downes, M., Chandraratna, R.A., Blumberg, B., Umesono, K. Genes Dev. (2001) [Pubmed]
  3. The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer. de Souza, F.S., Gawantka, V., Gómez, A.P., Delius, H., Ang, S.L., Niehrs, C. EMBO J. (1999) [Pubmed]
  4. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Doyen, C.M., An, W., Angelov, D., Bondarenko, V., Mietton, F., Studitsky, V.M., Hamiche, A., Roeder, R.G., Bouvet, P., Dimitrov, S. Mol. Cell. Biol. (2006) [Pubmed]
  5. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis. Banker, D.E., Eisenman, R.N. Mol. Cell. Biol. (1993) [Pubmed]
  6. FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Steiner, A.B., Engleka, M.J., Lu, Q., Piwarzyk, E.C., Yaklichkin, S., Lefebvre, J.L., Walters, J.W., Pineda-Salgado, L., Labosky, P.A., Kessler, D.S. Development (2006) [Pubmed]
  7. The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells. Offner, N., Duval, N., Jamrich, M., Durand, B. Development (2005) [Pubmed]
  8. Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Shinga, J., Itoh, M., Shiokawa, K., Taira, S., Taira, M. Mech. Dev. (2001) [Pubmed]
  9. Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus. Tour, E., Pillemer, G., Gruenbaum, Y., Fainsod, A. Mech. Dev. (2002) [Pubmed]
  10. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Zhu, Z., Kirschner, M. Dev. Cell (2002) [Pubmed]
  11. XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue. Mariani, F.V., Harland, R.M. Development (1998) [Pubmed]
  12. Xenopus Nbx, a novel NK-1 related gene essential for neural crest formation. Kurata, T., Ueno, N. Dev. Biol. (2003) [Pubmed]
  13. Identification of target genes for the Xenopus Hes-related protein XHR1, a prepattern factor specifying the midbrain-hindbrain boundary. Takada, H., Hattori, D., Kitayama, A., Ueno, N., Taira, M. Dev. Biol. (2005) [Pubmed]
  14. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Barreto, G., Borgmeyer, U., Dreyer, C. Mech. Dev. (2003) [Pubmed]
  15. A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Horb, M.E., Thomsen, G.H. Development (1997) [Pubmed]
  16. foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Sullivan, S.A., Akers, L., Moody, S.A. Dev. Biol. (2001) [Pubmed]
  17. Active repression of organizer genes by C-terminal domain of PV.1. Hwang, Y.S., Lee, H.S., Roh, D.H., Cha, S., Lee, S.Y., Seo, J.J., Kim, J., Park, M.J. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  18. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Moon, R.T., Kimelman, D. Bioessays (1998) [Pubmed]
  19. Antimorphic goosecoids. Ferreiro, B., Artinger, M., Cho, K., Niehrs, C. Development (1998) [Pubmed]
WikiGenes - Universities