The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PIN1  -  auxin efflux carrier component 1

Arabidopsis thaliana

Synonyms: ARABIDOPSIS THALIANA PIN-FORMED 1, ATPIN1, F6D5.2, F6D5_2, PIN-FORMED 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on PIN1

  • PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development [1].
  • In this issue of Cell, Geldner et al. demonstrate that the Arabidopsis ARF activator GNOM localizes to endosomes where it controls the polarized trafficking of the auxin efflux carrier PIN1 to the basal plasma membrane [2].
  • Both PIN1 localization and auxin transport are also sensitive to BFA [3].
  • The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin [3].
  • Asymmetric localization of PIN1 develops from a random distribution in Arabidopsis early embryogenesis [4].
 

Biological context of PIN1

  • This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation [5].
  • Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis [6].
  • Our results suggest a model where PIN1 and MP regulate apical patterning partially through the control of CUC gene expression [7].
  • Hydathodes, which develop in the tip and later in the lobes, were apparently primary sites of high free-auxin production, the latter supported by auxin-conjugate hydrolysis, auxin retention by the chalcone synthase-dependent action of flavonoids and also by the PIN1-component of the carrier-mediated basipetal transport [8].
  • Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1 [9].
 

Anatomical context of PIN1

 

Associations of PIN1 with chemical compounds

 

Regulatory relationships of PIN1

  • We found evidence that MP expression can be activated by auxin exposure and that PIN1 as well as DR5::GUS expression is defective in mp mutant leaves [14].
 

Other interactions of PIN1

  • This strongly suggests that ENP specifically regulates cotyledon development through control of PIN1 polarity in concert with PID [15].
  • Taken together the results suggest a feedback regulatory loop that involves auxin, MP and PIN1 and provide novel experimental support for the canalization-of-auxin-flow hypothesis [14].
  • Chemical and genetic inhibition revealed that auxin transport activity, in particular that of the PIN-FORMED1 (PIN1) and PIN4 proteins, is a major factor in the maintenance of these gradients [16].
  • Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole [17].
  • Chemical inhibition of polar auxin transport (PAT) severely affects the apical-basal patterning of the gynoecium, as do mutations in the auxin transport/signalling genes PIN1, PID and ETT [18].
 

Analytical, diagnostic and therapeutic context of PIN1

  • To determine whether PIN1 intracellular trafficking was affected, we analyzed PIN1:green fluorescent protein (GFP) dynamics using confocal microscopy in sfc roots [13].

References

  1. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., Friml, J. Cell (2003) [Pubmed]
  2. Endosome-specific localization and function of the ARF activator GNOM. Bonifacino, J.S., Jackson, C.L. Cell (2003) [Pubmed]
  3. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., Jürgens, G. Cell (2003) [Pubmed]
  4. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K., Jürgens, G. Science (1999) [Pubmed]
  5. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., Traas, J. Development (2000) [Pubmed]
  6. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B., Ljung, K., Sandberg, G., Hooykaas, P.J., Palme, K., Offringa, R. Science (2004) [Pubmed]
  7. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Aida, M., Vernoux, T., Furutani, M., Traas, J., Tasaka, M. Development (2002) [Pubmed]
  8. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Aloni, R., Schwalm, K., Langhans, M., Ullrich, C.I. Planta (2003) [Pubmed]
  9. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., Murphy, A.S. Nature (2003) [Pubmed]
  10. Subcellular Trafficking of the Arabidopsis Auxin Influx Carrier AUX1 Uses a Novel Pathway Distinct from PIN1. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M., Friml, J. Plant Cell (2006) [Pubmed]
  11. PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. Lee, S.H., Cho, H.T. Plant Cell (2006) [Pubmed]
  12. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Jaillais, Y., Fobis-Loisy, I., Miège, C., Rollin, C., Gaude, T. Nature (2006) [Pubmed]
  13. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Sieburth, L.E., Muday, G.K., King, E.J., Benton, G., Kim, S., Metcalf, K.E., Meyers, L., Seamen, E., Van Norman, J.M. Plant Cell (2006) [Pubmed]
  14. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Wenzel, C.L., Schuetz, M., Yu, Q., Mattsson, J. Plant J. (2007) [Pubmed]
  15. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Treml, B.S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E., Ruiz, R.A. Development (2005) [Pubmed]
  16. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Weijers, D., Sauer, M., Meurette, O., Friml, J., Ljung, K., Sandberg, G., Hooykaas, P., Offringa, R. Plant Cell (2005) [Pubmed]
  17. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., Jürgens, G. Nature (2003) [Pubmed]
  18. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Sohlberg, J.J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., Sundberg, E. Plant J. (2006) [Pubmed]
 
WikiGenes - Universities