The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

auxin     2-(1H-indol-3-yl)ethanoate

Synonyms: CHEBI:30854, BBL002800, CTK8D4999, STK372805, ZINC00083860, ...
This record was replaced with 802.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of auxin

  • A transferred DNA (T-DNA) tagging vector with the potential to produce dominant mutations was used with cocultured Agrobacterium tumefaciens and protoplasts to tag genes involved in the action of the plant growth substance auxin [1].
  • The iaaL gene of Pseudomonas syringae, subspecies savastanoi, encodes an indoleacetic acid (IAA)-lysine synthetase [2].
  • Ectopic expression of the wild-type Galpha-subunit phenocopies the Gbeta mutants (auxin hypersensitivity), probably by sequestering the Gbetagamma-subunits, whereas overexpression of Gbeta reduces auxin sensitivity and a constitutively active (Q222L) mutant Galpha behaves like the wild type [3].
  • When grown on auxin amides, both etiolated and green tms2+ seedlings exhibit a variety of dose-dependent auxin toxicity effects. tms2 mRNA and the encoded amidohydrolase activity are both detectable in transgenic but not in wild-type seedlings, demonstrating that a cognate activity is lacking in wild-type Arabidopsis [4].
  • An 11-bp element in D1, CCTCGTGTCTC, conferred auxin inducibility to a minimal cauliflower mosaic virus 35S promoter in transgenic tobacco seedlings as well as in carrot protoplasts (i.e., transient expression assays) [5].

High impact information on auxin

  • PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development [6].
  • Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways [7].
  • Here, we characterize a novel member of the PIN family of putative auxin efflux carriers, Arabidopsis PIN4, that is localized in developing and mature root meristems [8].
  • Regulation of auxin response by the protein kinase PINOID [9].
  • Constitutive expression of PID causes a phenotype in both shoots and roots that is similar to that of auxin-insensitive plants, implying that PID, which encodes a serine-threonine protein kinase, negatively regulates auxin signaling [9].

Chemical compound and disease context of auxin


Biological context of auxin

  • Arabidopsis plants carrying mutations in the PINOID (PID) gene have a pleiotropic shoot phenotype that mimics that of plants grown on auxin transport inhibitors or of plants mutant for the auxin efflux carrier PINFORMED (PIN), with defects in the formation of cotyledons, flowers, and floral organs [9].
  • Spatial patterns of expression of two immediate early auxin-responsive genes are altered in hookless1 mutants, suggesting that the ethylene response gene HOOKLESS1 controls differential cell growth by regulating auxin activity [14].
  • An auxin response element displays a maximum in the Arabidopsis root and we investigate its developmental significance [15].
  • The positive phototropism and the negative geotropism of grass seedling coleoptiles are believed to result from lateral movement of auxin from the irradiated to the shaded side and from the upper to the lower side, respectively [16].
  • The plant hormone auxin has a central role in many aspects of plant growth and development [17].

Anatomical context of auxin

  • In this issue of Cell, Geldner et al. demonstrate that the Arabidopsis ARF activator GNOM localizes to endosomes where it controls the polarized trafficking of the auxin efflux carrier PIN1 to the basal plasma membrane [18].
  • Tobacco protoplasts treated with cAMP, or the adenylyl cyclase activator forskolin, no longer require auxin to divide [19].
  • Here we used activation T-DNA tagging to create tobacco cell lines that can proliferate in the absence of the phytohormone auxin in the culture media [19].
  • Auxin specifies stem cell niche formation by directly and indirectly affecting gene activities [20].
  • We also show that auxin is necessary for GA-mediated control of root growth, and that attenuation of auxin transport or signalling delays the GA-induced disappearance of RGA from root cell nuclei [21].

Associations of auxin with other chemical compounds


Gene context of auxin


Analytical, diagnostic and therapeutic context of auxin

  • Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin [31].
  • Extensive protein sequence analysis of the major auxin-binding protein allowed the construction of several synthetic oligonucleotide probes which were used to isolate a cDNA coding for this protein [31].
  • We used in situ hybridization to localize two classes of auxin-regulated transcripts, GH3 and SAURs, within organs and tissues of soybean seedlings and flowers [32].
  • Analysis by gas chromatography coupled to mass spectrometry indicated increased levels of both free and conjugated indole-3-acetic acid. sur1 was crossed to the mutant axr2 and the altered-auxin response mutant ctr1 [33].
  • Sequence analysis of two peptide fragments showed total identity with the protein sequence of a strongly ripening-induced, auxin-dependent putative quinone oxidoreductase, Fragaria x ananassa quinone oxidoreductase (FaQR) [34].


  1. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Hayashi, H., Czaja, I., Lubenow, H., Schell, J., Walden, R. Science (1992) [Pubmed]
  2. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Romano, C.P., Hein, M.B., Klee, H.J. Genes Dev. (1991) [Pubmed]
  3. The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Ullah, H., Chen, J.G., Temple, B., Boyes, D.C., Alonso, J.M., Davis, K.R., Ecker, J.R., Jones, A.M. Plant Cell (2003) [Pubmed]
  4. Phytochrome control of the tms2 gene in transgenic Arabidopsis: a strategy for selecting mutants in the signal transduction pathway. Karlin-Neumann, G.A., Brusslan, J.A., Tobin, E.M. Plant Cell (1991) [Pubmed]
  5. Composite structure of auxin response elements. Ulmasov, T., Liu, Z.B., Hagen, G., Guilfoyle, T.J. Plant Cell (1995) [Pubmed]
  6. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., Friml, J. Cell (2003) [Pubmed]
  7. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., Jürgens, G. Cell (2003) [Pubmed]
  8. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., Palme, K. Cell (2002) [Pubmed]
  9. Regulation of auxin response by the protein kinase PINOID. Christensen, S.K., Dagenais, N., Chory, J., Weigel, D. Cell (2000) [Pubmed]
  10. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Kobayashi, M., Suzuki, T., Fujita, T., Masuda, M., Shimizu, S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  11. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. Steenhoudt, O., Vanderleyden, J. FEMS Microbiol. Rev. (2000) [Pubmed]
  12. Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme a carboxylase. Figueroa-Balderas, R.E., Garc??a-Ponce, B., Rocha-Sosa, M. Plant Physiol. (2006) [Pubmed]
  13. Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Eklöf, S., Astot, C., Sitbon, F., Moritz, T., Olsson, O., Sandberg, G. Plant J. (2000) [Pubmed]
  14. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Lehman, A., Black, R., Ecker, J.R. Cell (1996) [Pubmed]
  15. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., Scheres, B. Cell (1999) [Pubmed]
  16. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Gehring, C.A., Williams, D.A., Cody, S.H., Parish, R.W. Nature (1990) [Pubmed]
  17. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Leyser, H.M., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J., Estelle, M. Nature (1993) [Pubmed]
  18. Endosome-specific localization and function of the ARF activator GNOM. Bonifacino, J.S., Jackson, C.L. Cell (2003) [Pubmed]
  19. Identification and role of adenylyl cyclase in auxin signalling in higher plants. Ichikawa, T., Suzuki, Y., Czaja, I., Schommer, C., Lessnick, A., Schell, J., Walden, R. Nature (1997) [Pubmed]
  20. Regulation of root apical meristem development. Jiang, K., Feldman, L.J. Annu. Rev. Cell Dev. Biol. (2005) [Pubmed]
  21. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Fu, X., Harberd, N.P. Nature (2003) [Pubmed]
  22. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A. Science (1996) [Pubmed]
  23. The ROOT HAIR DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Wang, H., Lockwood, S.K., Hoeltzel, M.F., Schiefelbein, J.W. Genes Dev. (1997) [Pubmed]
  24. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Cheng, Y., Dai, X., Zhao, Y. Genes Dev. (2006) [Pubmed]
  25. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Xie, Q., Frugis, G., Colgan, D., Chua, N.H. Genes Dev. (2000) [Pubmed]
  26. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J., Celenza, J.L. Genes Dev. (2002) [Pubmed]
  27. The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Pozo, J.C., Timpte, C., Tan, S., Callis, J., Estelle, M. Science (1998) [Pubmed]
  28. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Gil, P., Dewey, E., Friml, J., Zhao, Y., Snowden, K.C., Putterill, J., Palme, K., Estelle, M., Chory, J. Genes Dev. (2001) [Pubmed]
  29. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H., Estelle, M. Genes Dev. (1999) [Pubmed]
  30. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Hamann, T., Benkova, E., Bäurle, I., Kientz, M., Jürgens, G. Genes Dev. (2002) [Pubmed]
  31. Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. Hesse, T., Feldwisch, J., Balshüsemann, D., Bauw, G., Puype, M., Vandekerckhove, J., Löbler, M., Klämbt, D., Schell, J., Palme, K. EMBO J. (1989) [Pubmed]
  32. Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Gee, M.A., Hagen, G., Guilfoyle, T.J. Plant Cell (1991) [Pubmed]
  33. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., Inzé, D. Plant Cell (1995) [Pubmed]
  34. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Raab, T., López-Ráez, J.A., Klein, D., Caballero, J.L., Moyano, E., Schwab, W., Muñoz-Blanco, J. Plant Cell (2006) [Pubmed]
WikiGenes - Universities