The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

groEL  -  molecular chaperone GroEL

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of groEL

 

High impact information on groEL

 

Chemical compound and disease context of groEL

 

Biological context of groEL

  • These findings suggest a possible role of the GroEL protein in cell division [10].
  • To identify those residues of the GroEL protein that interact with GroES, we have exploited the thermosensitive phenotype of strains bearing mutations at one or the other of two GroEL-interacting residues of GroES [12].
  • We conclude that the oligomer of TpN60 is homologous to the groEL protein and related chaperonins found in a wide variety of procaryotes and eucaryotes and thus may represent a heat shock protein involved in protein folding and assembly [4].
  • The bicistronic 2.4-kilobase transcript from this operon, barely detectable in RNA preparations from cells grown at 30 degrees C, accumulated approximately 120-fold in preparations from cells grown for 20 min at 45 degrees C. Under these conditions, GroEL protein accumulated to 10-fold-higher levels [13].
  • Changes of only three different amino acid substitutions in GroEL protein were found among these six groEL suppressor mutations [12].
 

Associations of groEL with chemical compounds

  • Like the groEL protein, symbionin was able to reconstitute dimeric ribulose 1,5-bisphosphate carboxylase/oxygenase holoenzyme from its unfolded subunits in vitro, suggesting that this protein functions as a molecular chaperon in the endosymbiont [14].
 

Physical interactions of groEL

 

Analytical, diagnostic and therapeutic context of groEL

References

  1. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Bochkareva, E.S., Lissin, N.M., Girshovich, A.S. Nature (1988) [Pubmed]
  2. The potent bone-resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. Kirby, A.C., Meghji, S., Nair, S.P., White, P., Reddi, K., Nishihara, T., Nakashima, K., Willis, A.C., Sim, R., Wilson, M. J. Clin. Invest. (1995) [Pubmed]
  3. Bacterial rep- mutations that block development of small DNA bacteriophages late in infection. Tessman, E.S., Peterson, P.K. J. Virol. (1976) [Pubmed]
  4. Isolation and characterization of a Treponema pallidum major 60-kilodalton protein resembling the groEL protein of Escherichia coli. Houston, L.S., Cook, R.G., Norris, S.J. J. Bacteriol. (1990) [Pubmed]
  5. Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon. Sato, S., Ishikawa, H. J. Bacteriol. (1997) [Pubmed]
  6. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Reading, D.S., Hallberg, R.L., Myers, A.M. Nature (1989) [Pubmed]
  7. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Jindal, S., Dudani, A.K., Singh, B., Harley, C.B., Gupta, R.S. Mol. Cell. Biol. (1989) [Pubmed]
  8. The small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its precursor expressed in Escherichia coli are associated with groEL protein. Landry, S.J., Bartlett, S.G. J. Biol. Chem. (1989) [Pubmed]
  9. Differential pattern of T cell recognition of the 65-kDa mycobacterial antigen following immunization with the whole protein or peptides. Brett, S.J., Lamb, J.R., Cox, J.H., Rothbard, J.B., Mehlert, A., Ivanyi, J. Eur. J. Immunol. (1989) [Pubmed]
  10. FtsZ-dependent localization of GroEL protein at possible division sites. Ogino, H., Wachi, M., Ishii, A., Iwai, N., Nishida, T., Yamada, S., Nagai, K., Sugai, M. Genes Cells (2004) [Pubmed]
  11. GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Hennequin, C., Porcheray, F., Waligora-Dupriet, A., Collignon, A., Barc, M., Bourlioux, P., Karjalainen, T. Microbiology (Reading, Engl.) (2001) [Pubmed]
  12. Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli. Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C. J. Bacteriol. (1994) [Pubmed]
  13. Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. Webb, R., Reddy, K.J., Sherman, L.A. J. Bacteriol. (1990) [Pubmed]
  14. Molecular chaperon produced by an intracellular symbiont. Kakeda, K., Ishikawa, H. J. Biochem. (1991) [Pubmed]
  15. Specificity of antibodies induced after immunization of mice with the mycobacterial heat shock protein of 65 kD. Barrios, C., Tougne, C., Polla, B.S., Lambert, P.H., Del Giudice, G. Clin. Exp. Immunol. (1994) [Pubmed]
 
WikiGenes - Universities