The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

groL  -  Cpn60 chaperonin GroEL, large subunit of...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK4137, JW4103, groEL, mopA
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of groL

  • We report here a new aspect of the heat-shock response in Escherichia coli: at high temperatures a fraction of groEL becomes modified covalently, altering its interaction with unfolded proteins [1].
  • The product of the Escherichia coli groEL gene is essential for cell viability and is required for the assembly of bacteriophage capsids [2].
  • In this study, we examine inter- and intraspecific nucleotide variation in groEL, a highly conserved chaperonin gene that is constitutively overexpressed in Buchnera [3].
  • Phage P1-mediated transduction and a two-dimensional gel electrophoretic analysis of cellular proteins indicated that these suppressor mutants carry an additional mutation in either the groEL gene or the rpoA gene [4].
  • Through a random genetic search to find loci that are required for expression of the Rhizobium meliloti nod (nodulation) genes, we isolated a mutant (B4) defective in luteolin-dependent activation of nod gene expression, and found it carries a Tn5 insertion within a chromosomal groEL gene (groELc) located just downstream of a groESc gene [5].

High impact information on groL


Chemical compound and disease context of groL


Biological context of groL

  • When present on a multicopy plasmid, a newly discovered gene (sugE) mapping to 94 min on the Escherichia coli chromosome, suppresses a groEL mutation and mimics the effects of groE overexpression [16].
  • A novel multicopy suppressor of a groEL mutation includes two nested open reading frames transcribed from different promoters [16].
  • The cDNA for nNOS was subcloned into the pCW vector under the control of the tac promotor and was coexpressed with the chaperonins groEL and groES in the protease-deficient BL21 strain of E. coli [17].
  • Facilitated protein folding experiments with ribulose-biphosphate carboxylase, under "nonpermissive" in vitro conditions, demonstrate that the recombinant protein is fully functional with groEL [18].
  • This binding site functions independently and can confer groEL binding activity on an unrelated carrier protein [19].

Anatomical context of groL

  • Sequencing of the groEL gene and the complementary cDNA encoding the chloroplast protein has revealed that these proteins are evolutionary homologues which we term 'chaperonins'. Chaperonins comprise a class of molecular chaperones that are found in chloroplasts, mitochondria and prokaryotes [2].
  • Exogenous and endogenous ligands on the cell surface, homologous to the groEL heat shock family, induced reactivities that resembled superantigen responses in this major subset of human peripheral blood gamma delta T cells [20].
  • Constitutive expression of a groEL-related protein on the surface of human gamma/delta cells [21].
  • Thus, we conclude that groEL is a potent inducer of monocyte proinflammatory cytokine production, which acts through the binding of nonconformational peptide domains that are conserved after proteolysis [12].
  • We have determined that groEL binds to a unique peptide sequence near the amino terminus of nascent eosinophil cationic protein that includes the first of eight cysteine residues [19].

Associations of groL with chemical compounds

  • The induction of groEL and dnaK by UV light and nalidixic acid is controlled by the htpR locus [22].
  • Using 12-day cultures of mouse bone marrow to assess osteoclast recruitment, groEL (1-1000 ng/ml) caused a dramatic dose-dependent stimulation of the formation of tartrate-resistant acid phosphatase-positive multinucleated cells and the resorption of the dentine on which bone marrow cells were cultured [23].
  • Osteoclast formation elicited by groEL was almost completely abolished by indomethacin, an inhibitor of cyclo-oxygenase, but was unaffected by inhibitors of 5-lipoxygenase, suggesting that prostaglandins but not leukotrienes may mediate the action of groEL on osteoclastogenesis [23].
  • Analysis of the data by Scatchard plot shows that acetyl-malate dehydrogenase, which has previously been extensively unfolded with guanidinium chloride, binds to groEL at a specific binding site(s) [24].
  • A comment on: 'The aromatic amino acid content of the bacterial chaperone protein groEL (cpn60): evidence for the presence of a single tryptophan', by N.C. Price, S.M. Kelly, S. Wood and A. auf der Mauer (1991) FEBS Lett. 292, 9-12 [25].

Physical interactions of groL


Regulatory relationships of groL


Other interactions of groL


Analytical, diagnostic and therapeutic context of groL


  1. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Sherman MYu, n.u.l.l., Goldberg, A.L. Nature (1992) [Pubmed]
  2. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., Ellis, R.J. Nature (1988) [Pubmed]
  3. A conservative test of genetic drift in the endosymbiotic bacterium Buchnera: slightly deleterious mutations in the chaperonin groEL. Herbeck, J.T., Funk, D.J., Degnan, P.H., Wernegreen, J.J. Genetics (2003) [Pubmed]
  4. Genetic suppression of a temperature-sensitive groES mutation by an altered subunit of RNA polymerase of Escherichia coli K-12. Wada, M., Fujita, H., Itikawa, H. J. Bacteriol. (1987) [Pubmed]
  5. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Ogawa, J., Long, S.R. Genes Dev. (1995) [Pubmed]
  6. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Kerner, M.J., Naylor, D.J., Ishihama, Y., Maier, T., Chang, H.C., Stines, A.P., Georgopoulos, C., Frishman, D., Hayer-Hartl, M., Mann, M., Hartl, F.U. Cell (2005) [Pubmed]
  7. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Roseman, A.M., Chen, S., White, H., Braig, K., Saibil, H.R. Cell (1996) [Pubmed]
  8. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Horwich, A.L., Low, K.B., Fenton, W.A., Hirshfield, I.N., Furtak, K. Cell (1993) [Pubmed]
  9. Identification of in vivo substrates of the chaperonin GroEL. Houry, W.A., Frishman, D., Eckerskorn, C., Lottspeich, F., Hartl, F.U. Nature (1999) [Pubmed]
  10. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye, H.S., Burston, S.G., Fenton, W.A., Beechem, J.M., Xu, Z., Sigler, P.B., Horwich, A.L. Nature (1997) [Pubmed]
  11. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Goloubinoff, P., Gatenby, A.A., Lorimer, G.H. Nature (1989) [Pubmed]
  12. Homogeneous Escherichia coli chaperonin 60 induces IL-1 beta and IL-6 gene expression in human monocytes by a mechanism independent of protein conformation. Tabona, P., Reddi, K., Khan, S., Nair, S.P., Crean, S.J., Meghji, S., Wilson, M., Preuss, M., Miller, A.D., Poole, S., Carne, S., Henderson, B. J. Immunol. (1998) [Pubmed]
  13. Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. Mattingly, J.R., Iriarte, A., Martinez-Carrion, M. J. Biol. Chem. (1995) [Pubmed]
  14. Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. Ohshiro, T., Ishii, Y., Matsubara, T., Ueda, K., Izumi, Y., Kino, K., Kirimura, K. J. Biosci. Bioeng. (2005) [Pubmed]
  15. GroEL-mediated folding of structurally homologous dihydrofolate reductases. Clark, A.C., Frieden, C. J. Mol. Biol. (1997) [Pubmed]
  16. A novel multicopy suppressor of a groEL mutation includes two nested open reading frames transcribed from different promoters. Greener, T., Govezensky, D., Zamir, A. EMBO J. (1993) [Pubmed]
  17. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Roman, L.J., Sheta, E.A., Martasek, P., Gross, S.S., Liu, Q., Masters, B.S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10. Dickson, R., Larsen, B., Viitanen, P.V., Tormey, M.B., Geske, J., Strange, R., Bemis, L.T. J. Biol. Chem. (1994) [Pubmed]
  19. Characterization of a distinct binding site for the prokaryotic chaperone, GroEL, on a human granulocyte ribonuclease. Rosenberg, H.F., Ackerman, S.J., Tenen, D.G. J. Biol. Chem. (1993) [Pubmed]
  20. Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt's lymphoma cells. Fisch, P., Malkovsky, M., Kovats, S., Sturm, E., Braakman, E., Klein, B.S., Voss, S.D., Morrissey, L.W., DeMars, R., Welch, W.J. Science (1990) [Pubmed]
  21. Constitutive expression of a groEL-related protein on the surface of human gamma/delta cells. Jarjour, W., Mizzen, L.A., Welch, W.J., Denning, S., Shaw, M., Mimura, T., Haynes, B.F., Winfield, J.B. J. Exp. Med. (1990) [Pubmed]
  22. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Krueger, J.H., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  23. The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation. Reddi, K., Meghji, S., Nair, S.P., Arnett, T.R., Miller, A.D., Preuss, M., Wilson, M., Henderson, B., Hill, P. J. Bone Miner. Res. (1998) [Pubmed]
  24. Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES). Hutchinson, J.P., el-Thaher, T.S., Miller, A.D. Biochem. J. (1994) [Pubmed]
  25. A comment on: 'The aromatic amino acid content of the bacterial chaperone protein groEL (cpn60): evidence for the presence of a single tryptophan', by N.C. Price, S.M. Kelly, S. Wood and A. auf der Mauer (1991) FEBS Lett. 292, 9-12. Hayer-Hartl, M.K., Hartl, F.U. FEBS Lett. (1993) [Pubmed]
  26. Suppression of the Escherichia coli ssb-1 mutation by an allele of groEL. Ruben, S.M., VanDenBrink-Webb, S.E., Rein, D.C., Meyer, R.R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  27. Molecular cloning and nucleotide sequence of the groEL gene from the alkaliphilic Bacillus sp. strain C-125 and reactivation of thermally inactivated alpha-glucosidase by recombinant GroEL. Xu, Y., Kobayashi, T., Kudo, T. Biosci. Biotechnol. Biochem. (1996) [Pubmed]
  28. Purification and properties of the groES morphogenetic protein of Escherichia coli. Chandrasekhar, G.N., Tilly, K., Woolford, C., Hendrix, R., Georgopoulos, C. J. Biol. Chem. (1986) [Pubmed]
  29. Functional interaction of heat shock protein GroEL with an RNase E-like activity in Escherichia coli. Sohlberg, B., Lundberg, U., Hartl, F.U., von Gabain, A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  30. Heat shock response of the archaebacterium Methanococcus voltae. Hebert, A.M., Kropinski, A.M., Jarrell, K.F. J. Bacteriol. (1991) [Pubmed]
  31. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Chow, K.C., Tung, W.L. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  32. The rates of commitment to renaturation of rhodanese and glutamine synthetase in the presence of the groE chaperonins. Fisher, M.T., Yuan, X. J. Biol. Chem. (1994) [Pubmed]
  33. Molecular and functional analysis of the Rickettsia typhi groESL operon. Radulovic, S., Rahman, M.S., Beier, M.S., Azad, A.F. Gene (2002) [Pubmed]
  34. Sequence analysis and phenotypic characterization of groEL mutations that block lambda and T4 bacteriophage growth. Zeilstra-Ryalls, J., Fayet, O., Baird, L., Georgopoulos, C. J. Bacteriol. (1993) [Pubmed]
WikiGenes - Universities