The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Xenorhabdus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Xenorhabdus

 

High impact information on Xenorhabdus

  • Molecular analysis of the two-component genes, ompR and envZ, in the symbiotic bacterium Xenorhabdus nematophilus [4].
  • The mode of action of 3,5-dihydroxy-4-ethyl-trans-stilbene (ES), an antibiotic produced by Xenorhabdus luminescens symbiotically associated with an entomopathogenic nematode, was investigated [5].
  • Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions [6].
  • Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease [7].
  • We show that inactivation of envZ, the gene encoding the histidine kinase sensor protein, EnvZ, of Xenorhabdus nematophilus, affected the production of several outer membrane proteins (Opns) [8].
 

Chemical compound and disease context of Xenorhabdus

  • Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens [9].
  • We have investigated the interactions of a recombinant luciferase from a terrestrial bacterium Xenorhabdus luminescens with the reaction products, FMN and myristic acid, using steady-state fluorescence spectroscopy [10].
  • We investigated the fatty acid composition of Xenorhabdus species when grown at 15, 20, 25 or 30 degrees C on media containing one of two primary carbon sources: glucose or lipids from the insect host, Galleria mellonella [11].
  • Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria [12].
  • Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus [13].
 

Biological context of Xenorhabdus

  • Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound [14].
  • Three strains of Xenorhabdus nematophilus (A24, F1, NC116) and strain Dan of Xenorhabdus bovienii were tested to evaluate whether the phase variation observed in these bacteria was in any way connected with plasmids [15].
 

Gene context of Xenorhabdus

  • Cloning and nucleotide sequence of a flagellin encoding genetic locus from Xenorhabdus nematophilus: phase variation leads to differential transcription of two flagellar genes (fliCD) [16].
  • Hybridization studies with the DNA that codes for the two subunits of luciferase revealed considerable homology among all of the strains of X. luminescens and with the DNA of other species of luminous bacteria, but none with the nonluminous Xenorhabdus species [1].
  • Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain [17].
  • To determine whether RecA-mediated processes are linked to phase variation, the recA gene of Xenorhabdus bovienii was cloned and sequenced [18].
  • These latter results suggest that a gene(s) higher in the transcriptional hierarchy of the flagellar regulon is switched off in Xenorhabdus phase II variants [16].
 

Analytical, diagnostic and therapeutic context of Xenorhabdus

References

  1. Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. Frackman, S., Anhalt, M., Nealson, K.H. J. Bacteriol. (1990) [Pubmed]
  2. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. Chen, G., Zhang, Y., Li, J., Dunphy, G.B., Punja, Z.K., Webster, J.M. J. Invertebr. Pathol. (1996) [Pubmed]
  3. Diversity of the phosphoenolpyruvate/glucose phosphotransferase system in the Enterobacteriaceae. Bouvet, O.M., Grimont, P.A. Ann. Inst. Pasteur Microbiol. (1987) [Pubmed]
  4. Molecular analysis of the two-component genes, ompR and envZ, in the symbiotic bacterium Xenorhabdus nematophilus. Tabatabai, N., Forst, S. Mol. Microbiol. (1995) [Pubmed]
  5. The role of guanosine-3',5'-bis-pyrophosphate in mediating antimicrobial activity of the antibiotic 3,5-dihydroxy-4-ethyl-trans-stilbene. Sundar, L., Chang, F.N. Antimicrob. Agents Chemother. (1992) [Pubmed]
  6. Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions. Orchard, S.S., Goodrich-Blair, H. Appl. Environ. Microbiol. (2005) [Pubmed]
  7. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease. Orchard, S.S., Goodrich-Blair, H. Appl. Environ. Microbiol. (2004) [Pubmed]
  8. Role of the histidine kinase, EnvZ, in the production of outer membrane proteins in the symbiotic-pathogenic bacterium Xenorhabdus nematophilus. Forst, S.A., Tabatabai, N. Appl. Environ. Microbiol. (1997) [Pubmed]
  9. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Richardson, W.H., Schmidt, T.M., Nealson, K.H. Appl. Environ. Microbiol. (1988) [Pubmed]
  10. Fatty acid-enhanced binding of flavin mononucleotide to bacterial luciferase measured by steady-state fluorescence. Li, Z., Meighen, E.A. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  11. Growth-mediated variations in fatty acids of Xenorhabdus sp. Abu Hatab, M.A., Gaugler, R. J. Appl. Microbiol. (1997) [Pubmed]
  12. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y. FEMS Microbiol. Lett. (2004) [Pubmed]
  13. Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. Sundar, L., Chang, F.N. J. Gen. Microbiol. (1993) [Pubmed]
  14. Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound. Xi, L., Cho, K.W., Tu, S.C. J. Bacteriol. (1991) [Pubmed]
  15. Plasmids and phase variation in Xenorhabdus spp. Leclerc, M.C., Boemare, N.E. Appl. Environ. Microbiol. (1991) [Pubmed]
  16. Cloning and nucleotide sequence of a flagellin encoding genetic locus from Xenorhabdus nematophilus: phase variation leads to differential transcription of two flagellar genes (fliCD). Givaudan, A., Lanois, A., Boemare, N. Gene (1996) [Pubmed]
  17. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain. Joo Lee, P., Ahn, J.Y., Kim, Y.H., Wook Kim, S., Kim, J.Y., Park, J.S., Lee, J. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  18. Xenorhabdus bovienii T228 phase variation and virulence are independent of RecA function. Pinyon, R.A., Hew, F.H., Thomas, C.J. Microbiology (Reading, Engl.) (2000) [Pubmed]
  19. Immobilization of Escherichia coli expressing the lux genes of Xenorhabdus luminescens. Marincs, F., White, D.W. Appl. Environ. Microbiol. (1994) [Pubmed]
  20. Molecular cloning and characterization of the lux genes from the secondary form of Xenorhabdus luminescens, K122. Wang, H., Dowds, B.C. Biochem. Soc. Trans. (1992) [Pubmed]
 
WikiGenes - Universities