The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Photorhabdus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Photorhabdus

  • Photorhabdus sp. strain K122 was found to produce higher levels of the protein CAP87K when cultured at 9 degrees C than when cultured at 28 degrees C. NH2-terminal sequencing of this protein revealed homology with the NH2 terminus of Escherichia coli polynucleotide phosphorylase [1].
  • Sequence data show that the antifeeding component is part of a large gene cluster that may form a defective prophage and that six potential members of this prophage are present in Photorhabdus luminescens subsp. laumondii TTO1, a species which also has sep gene homologues [2].
  • Here we describe the construction and characterization of a biosensing reporter where luxCDABE genes from Photorhabdus luminescens, engineered for expression in Gram-positive organisms, are under the transcriptional control of QacR repressor from Staphylococcus aureus [3].
  • The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus, Photorhabdus luminescens W14 P. luminescens TTO1, and Yersinia pestis CO92 [4].
  • The role of chaperones Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA-ClpB-ClpX) in refolding of thermoinactivated luciferase from the marine bacterium Photobacterium fischeri and the terrestrial bacterium Photorhabdus luminescens has been studied [5].
 

High impact information on Photorhabdus

  • In vivo expression of the mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection [6].
  • PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50 degrees C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14 [7].
  • Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes [8].
  • A Phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora [9].
  • Sequence analysis of the 17-kb region showed that the predicted products of three of the open reading frames (sepA, sepB, and sepC) showed significant sequence similarity to components of the insecticidal toxin produced by the bacterium Photorhabdus luminescens [10].
 

Chemical compound and disease context of Photorhabdus

 

Biological context of Photorhabdus

 

Gene context of Photorhabdus

References

  1. The gene coding for polynucleotide phosphorylase in Photorhabdus sp. strain K122 is induced at low temperatures. Clarke, D.J., Dowds, B.C. J. Bacteriol. (1994) [Pubmed]
  2. Cloning Serratia entomophila antifeeding genes--a putative defective prophage active against the grass grub Costelytra zealandica. Hurst, M.R., Glare, T.R., Jackson, T.A. J. Bacteriol. (2004) [Pubmed]
  3. A real-time analysis of QacR-regulated multidrug resistance in Staphylococcus aureus. Galluzzi, L., Virtanen, P., Karp, M. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  4. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain. Joo Lee, P., Ahn, J.Y., Kim, Y.H., Wook Kim, S., Kim, J.Y., Park, J.S., Lee, J. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  5. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Zavilgelsky, G.B., Kotova, V.Y., Mazhul', M.M., Manukhov, I.V. Biochemistry Mosc. (2002) [Pubmed]
  6. In vivo expression of the mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. Meslet-Cladiere, L.M., Pimenta, A., Duchaud, E., Holland, I.B., Blight, M.A. J. Bacteriol. (2004) [Pubmed]
  7. Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Cabral, C.M., Cherqui, A., Pereira, A., Simões, N. Appl. Environ. Microbiol. (2004) [Pubmed]
  8. Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Ciche, T.A., Blackburn, M., Carney, J.R., Ensign, J.C. Appl. Environ. Microbiol. (2003) [Pubmed]
  9. A Phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. Ciche, T.A., Bintrim, S.B., Horswill, A.R., Ensign, J.C. J. Bacteriol. (2001) [Pubmed]
  10. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Hurst, M.R., Glare, T.R., Jackson, T.A., Ronson, C.W. J. Bacteriol. (2000) [Pubmed]
  11. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Li, J., Chen, G., Wu, H., Webster, J.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  12. The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Williams, J.S., Thomas, M., Clarke, D.J. Microbiology (Reading, Engl.) (2005) [Pubmed]
  13. Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. Pellinen, T., Bylund, G., Virta, M., Niemi, A., Karp, M. J. Agric. Food Chem. (2002) [Pubmed]
  14. Characterisation of symbionts of entomopathogenic nematodes by universally primed-PCR (UP-PCR) and UP-PCR product cross-hybridisation. Nielsen, O., Lübeck, P.S. FEMS Microbiol. Lett. (2002) [Pubmed]
  15. Detection of tetracyclines with luminescent bacterial strains. Kurittu, J., Karp, M., Korpela, M. Luminescence : the journal of biological and chemical luminescence. (2000) [Pubmed]
  16. Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Bowen, D.J., Rocheleau, T.A., Grutzmacher, C.K., Meslet, L., Valens, M., Marble, D., Dowling, A., Ffrench-Constant, R., Blight, M.A. Microbiology (Reading, Engl.) (2003) [Pubmed]
  17. Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity. Jarosz, J. Parasitology (1998) [Pubmed]
  18. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim, Y., Ji, D., Cho, S., Park, Y. J. Invertebr. Pathol. (2005) [Pubmed]
  19. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Fischer-Le Saux, M., Viallard, V., Brunel, B., Normand, P., Boemare, N.E. Int. J. Syst. Bacteriol. (1999) [Pubmed]
 
WikiGenes - Universities