The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ymt  -  toxin protein

Yersinia pestis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ymt

  • The Shiga toxigenic Escherichia coli (STEC) O113:H21 strain 98NK2, which was responsible for an outbreak of hemolytic uremic syndrome, secretes a highly potent and lethal subtilase cytotoxin that is unrelated to any bacterial toxin described to date [1].
  • Oral immunization against cholera toxin with a live Yersinia enterocolitica carrier in mice [2].
  • The genome of the TT01 strain of Photorhabdus luminescens was recently sequenced and a large number of toxin-encoding genes were found [3].
  • Three novel tRNA genes present in the phage genome may serve to increase the availability of rare tRNA species associated with efficient expression of pathogenicity determinants: both the Shiga toxin and serine/threonine kinase genes contain rare isoleucine and arginine codons [4].
  • The N-terminal peptide was found to show no inhibition of the proliferation induced by the other superantigen (staphylococcal enterotoxin B) or the other T-cell mitogen pertussis toxin, indicating that the inhibition is specific to YPM-induced proliferation [5].

High impact information on ymt


Chemical compound and disease context of ymt


Biological context of ymt

  • Through the search for genes upregulated at low growth temperatures in Yersinia enterocolitica strain W22703, a genomic island of 19 kb termed tc-PAI(Ye) with homologues of the toxin genes tcaA, tcaB, tcaC and tccC was identified [13].
  • Our data show that the superantigenic toxin YPMa contributes to the virulence of Y. pseudotuberculosis in systemic infection in mice [14].
  • The C-terminal 30 amino acids of the predicted protein exactly correspond to the amino acid sequence of the toxin extracted from culture supernatants (T. Takao, N. Tominaga, and Y. Shimonishi, Biochem. Biophys. Res. Commun. 125:845-851, 1984) [15].
  • These data indicate that YopJ functions as a "MAP kinase toxin" to selectively block nuclear responses that are triggered by Yersinia-host cell interaction [16].
  • On the basis of the published nucleotide sequences of the genes that code for the heat-labile toxin LTh and the heat-stable toxins STaI and STaII of human enterotoxigenic Escherichia coli, a 34-mer and two 33-mer oligonucleotide probes were synthesized [17].

Anatomical context of ymt


Associations of ymt with chemical compounds

  • The toxin produced by this noninvasive (serogroup O6) strain resembled YST in terms of molecular size, heat stability, and solubility in methanol [23].
  • Measurement of antibacterial activities of T-2 toxin, deoxynivalenol, ochratoxin A, aflatoxin B1 and fumonisin B1 using microtitration tray-based turbidimetric techniques [24].
  • T-2 toxin, deoxynivalenol (DON), ochratoxin A (OTA), aflatoxin B1 (AFB1) and fumonisin B1 (FB1) were used as representative mycotoxins [24].
  • The data obtained indicate that bacterial growth can be inhibited especially by T-2 toxin, aflatoxin B1 and ochratoxin A and that this effect can be partially counteracted by antioxidants such as coenzyme Q10 plus l-carnitine [25].

Analytical, diagnostic and therapeutic context of ymt

  • Shiga toxin-producing (STEC), attaching-and-effacing (A/EEC), enteropathogenic (EPEC), enterotoxigenic, enteroinvasive, and enteroaggregative Escherichia coli were detected by using colony hybridization with virulence gene probes and serotyping [26].
  • This purified protein showed cross-reactivity to the binding subunit of cholera toxin in western immunoblot [27].
  • Humoral immunity to plague was improved further, resulting in 80% protection from challenge, if a relatively high dose (10 micrograms) of cholera toxin B subunit was added to the microsphere suspension prior to intra-nasal delivery [28].
  • We conclude that in this animal model of pneumonic plague, intra-nasal administration of microgram quantities of Yersinia pestis subunits confers protective immunity, provided the vaccines are microencapsulated or admixed with a strong mucosal adjuvant, such as the cholera toxin B subunit [28].
  • Extending this work to toxin-antitoxin relationships, Martin provided evidence that antitoxin was a large molecule with slow diffusibility in tissue and advised the administration of curative serum (including diphtheria antitoxin) by intravenous injection [29].


  1. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. Paton, A.W., Srimanote, P., Talbot, U.M., Wang, H., Paton, J.C. J. Exp. Med. (2004) [Pubmed]
  2. Oral immunization against cholera toxin with a live Yersinia enterocolitica carrier in mice. Van Damme, M., Sory, M.P., Biot, T., Vaerman, J.P., Cornelis, G.R. Gastroenterology (1992) [Pubmed]
  3. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Brugirard-Ricaud, K., Duchaud, E., Givaudan, A., Girard, P.A., Kunst, F., Boemare, N., Brehélin, M., Zumbihl, R. Cell. Microbiol. (2005) [Pubmed]
  4. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. Plunkett, G., Rose, D.J., Durfee, T.J., Blattner, F.R. J. Bacteriol. (1999) [Pubmed]
  5. Identification of the functional region on the superantigen Yersinia pseudotuberculosis-derived mitogen responsible for induction of lymphocyte proliferation by using synthetic peptides. Yoshino, K., Takao, T., Ishibashi, M., Samejima, Y., Shimonishi, Y., Takeda, T. FEBS Lett. (1996) [Pubmed]
  6. Shiga-like toxin-producing Escherichia coli in Seattle children: a prospective study. Bokete, T.N., O'Callahan, C.M., Clausen, C.R., Tang, N.M., Tran, N., Moseley, S.L., Fritsche, T.R., Tarr, P.I. Gastroenterology (1993) [Pubmed]
  7. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Buetow, L., Flatau, G., Chiu, K., Boquet, P., Ghosh, P. Nat. Struct. Biol. (2001) [Pubmed]
  8. Continuous exposure of mice to superantigenic toxins induces a high-level protracted expansion and an immunological memory in the toxin-reactive CD4+ T cells. Chen, L., Koyanagi, M., Fukada, K., Imanishi, K., Yagi, J., Kato, H., Miyoshi-Akiyama, T., Zhang, R., Miwa, K., Uchiyama, T. J. Immunol. (2002) [Pubmed]
  9. RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Bailey, M.J., Hughes, C., Koronakis, V. Mol. Microbiol. (1997) [Pubmed]
  10. Endoproteolytic processing of RhoA by Rce1 is required for the cleavage of RhoA by Yersinia enterocolitica outer protein T. Fueller, F., Bergo, M.O., Young, S.G., Aktories, K., Schmidt, G. Infect. Immun. (2006) [Pubmed]
  11. Update on media for isolation of Enterobacteriaceae from foods. de Boer, E. Int. J. Food Microbiol. (1998) [Pubmed]
  12. Development of digoxigenin-labeled PCR amplicon probes for use in the detection and identification of enteropathogenic Yersinia and Shiga toxin-producing Escherichia coli from foods. Weagant, S.D., Jagow, J.A., Jinneman, K.C., Omiecinski, C.J., Kaysner, C.A., Hill, W.E. J. Food Prot. (1999) [Pubmed]
  13. Low temperature-induced insecticidal activity of Yersinia enterocolitica. Bresolin, G., Morgan, J.A., Ilgen, D., Scherer, S., Fuchs, T.M. Mol. Microbiol. (2006) [Pubmed]
  14. Superantigen YPMa exacerbates the virulence of Yersinia pseudotuberculosis in mice. Carnoy, C., Mullet, C., Müller-Alouf, H., Leteurtre, E., Simonet, M. Infect. Immun. (2000) [Pubmed]
  15. Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among pathogenic and nonpathogenic yersiniae. Delor, I., Kaeckenbeeck, A., Wauters, G., Cornelis, G.R. Infect. Immun. (1990) [Pubmed]
  16. YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Palmer, L.E., Pancetti, A.R., Greenberg, S., Bliska, J.B. Infect. Immun. (1999) [Pubmed]
  17. Comparative study of colony hybridization with synthetic oligonucleotide probes and enzyme-linked immunosorbent assay for identification of enterotoxigenic Escherichia coli. Sommerfelt, H., Svennerholm, A.M., Kalland, K.H., Haukanes, B.I., Bjorvatn, B. J. Clin. Microbiol. (1988) [Pubmed]
  18. LcrV, a substrate for Yersinia enterocolitica type III secretion, is required for toxin targeting into the cytosol of HeLa cells. Lee, V.T., Tam, C., Schneewind, O. J. Biol. Chem. (2000) [Pubmed]
  19. The etiology and management of diarrhea in the gynecologic oncology patient. Cirisano, F.D., Greenspoon, J.S., Stenson, R., Farias-Eisner, R., Karlan, B.Y., Lagasse, L.D. Gynecol. Oncol. (1993) [Pubmed]
  20. Comparative study of the nature and biological activities of bacterial enterotoxins. Gemmell, C.G. J. Med. Microbiol. (1984) [Pubmed]
  21. Effect of Yersinia enterocolitica ST on cyclic guanosine 3',5'-monophosphate levels in mouse intestines and cultured cells. Inoue, T., Okamoto, K., Moriyama, T., Takahashi, T., Shimizu, K., Miyama, A. Microbiol. Immunol. (1983) [Pubmed]
  22. Biochemical aspects of H. pylori adhesion. Wadström, T., Hirmo, S., Nilsson, B. J. Physiol. Pharmacol. (1997) [Pubmed]
  23. Assessment of enterotoxin production by Yersinia enterocolitica and identification of a novel heat-stable enterotoxin produced by a noninvasive Y. enterocolitica strain isolated from clinical material. Robins-Browne, R.M., Takeda, T., Fasano, A., Bordun, A.M., Dohi, S., Kasuga, H., Fang, G., Prado, V., Guerrant, R.L., Fong, G. Infect. Immun. (1993) [Pubmed]
  24. Measurement of antibacterial activities of T-2 toxin, deoxynivalenol, ochratoxin A, aflatoxin B1 and fumonisin B1 using microtitration tray-based turbidimetric techniques. Ali-Vehmas, T., Rizzo, A., Westermarck, T., Atroshi, F. Zentralblatt für Veterinärmedizin. Reihe A. (1998) [Pubmed]
  25. Effects of tamoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. Atroshi, F., Rizzo, A., Westermarck, T., Ali-vehmas, T. Pharmacol. Res. (1998) [Pubmed]
  26. Etiology of diarrhea in young children in Denmark: a case-control study. Olesen, B., Neimann, J., Böttiger, B., Ethelberg, S., Schiellerup, P., Jensen, C., Helms, M., Scheutz, F., Olsen, K.E., Krogfelt, K., Petersen, E., Mølbak, K., Gerner-Smidt, P. J. Clin. Microbiol. (2005) [Pubmed]
  27. A biologically active lectin of enteroaggregative Escherichia coli. Basu, S., Ghosh, S., Ganguly, N.K., Majumdar, S. Biochimie (2004) [Pubmed]
  28. Intra nasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Eyles, J.E., Sharp, G.J., Williamson, E.D., Spiers, I.D., Alpar, H.O. Vaccine (1998) [Pubmed]
  29. Sir Charles James Martin MB FRS: Australian serpents and Indian plague, one-hundred years ago. Hawgood, B.J. Toxicon (1997) [Pubmed]
WikiGenes - Universities