The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Halomonadaceae

  • All of the members of the Halomonadaceae examined and Halovibrio variabilis possess a cytosine residue at position 486 (Escherichia coli numbering), which is an extremely rare attribute among the prokaryotes and has been reported in only one other species, Listonella anguillarum [1].
  • In order to understand why Alcanivorax overcomes other bacteria under such cultural conditions, competition experiments between Alcanivorax indigenous to seawater and the exogenous alkane-degrading marine bacterium, Acinetobacter venetianus strain T4, were conducted [2].
  • The deduced protein sequence of the putative alkane hydrolase, AlkB, of strain MIL-1T is related to the corresponding enzymes of Alcanivorax borkumensis and Pseudomonas oleovorans (81 and 80% similarity, respectively) [3].
  • Extremely abundant porin proteins with an apparent molecular mass of 49 kDa were found in Chromohalobacter sp.160 and Halomonas sp. 40, but no major outer membrane protein was detected in Chromohalobacter sp. 43, suggesting strain 43 was most likely a naturally defective porin mutant [4].

High impact information on Halomonadaceae


Chemical compound and disease context of Halomonadaceae

  • The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group [8].
  • C. marismortui belongs in the family Halomonadaceae and has the characteristic 16S rRNA signatures defined for this family, including the distinctive cytosine residue at position 486 found in all members of the Halomonadaceae [9].
  • The size of the Alcanivorax population increased with increasing incubation time and accounted for 91% of the 4',6-diamidino-2-phenylindole (DAPI) count after incubation for 2 weeks [10].
  • The growth rate of Chromohalobacter salexigens DSM 3043 can be stimulated in media containing 0.3 M NaCl by a 0.7 M concentration of other salts of Na+, K+, Rb+, or NH4+, Cl-, Br-, NO3-, or SO4(2-) ions [11].
  • Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T [12].

Biological context of Halomonadaceae

  • A functional genomics analysis of Alcanivorax borkumensis strain SK2 was recently initiated, and its genome sequence has just been completed [13].

Gene context of Halomonadaceae

  • Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2 [6].
  • On the basis of biochemical and molecular data, it is suggested that strains ISO1 and ISO4T be recognized as a novel species of the genus Alcanivorax, for which the name Alcanivorax venustensis (ISO4T =DSM 13974T =CECT 5388T) is proposed [14].
  • Chromohalobacter marismortui VH1 was screened for its ability to utilise organosulfonate compounds at a range of NaCl concentrations [15].


  1. Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Dobson, S.J., McMeekin, T.A., Franzmann, P.D. Int. J. Syst. Bacteriol. (1993) [Pubmed]
  2. Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Hara, A., Syutsubo, K., Harayama, S. Environ. Microbiol. (2003) [Pubmed]
  3. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Yakimov, M.M., Giuliano, L., Denaro, R., Crisafi, E., Chernikova, T.N., Abraham, W.R., Luensdorf, H., Timmis, K.N., Golyshin, P.N. Int. J. Syst. Evol. Microbiol. (2004) [Pubmed]
  4. Major outer membrane proteins in moderately halophilic eubacteria of genera Chromohalobacter and Halomonas. Tokunaga, H., Mitsuo, K., Kamekura, M., Tokunaga, M. J. Basic Microbiol. (2004) [Pubmed]
  5. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. van Beilen, J.B., Marín, M.M., Smits, T.H., Röthlisberger, M., Franchini, A.G., Witholt, B., Rojo, F. Environ. Microbiol. (2004) [Pubmed]
  6. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Hara, A., Baik, S.H., Syutsubo, K., Misawa, N., Smits, T.H., van Beilen, J.B., Harayama, S. Environ. Microbiol. (2004) [Pubmed]
  7. Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. Tokunaga, H., Mitsuo, K., Ichinose, S., Omori, A., Ventosa, A., Nakae, T., Tokunaga, M. Appl. Environ. Microbiol. (2004) [Pubmed]
  8. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Röling, W.F., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.J., Head, I.M. Appl. Environ. Microbiol. (2002) [Pubmed]
  9. Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Mellado, E., Moore, E.R., Nieto, J.J., Ventosa, A. Int. J. Syst. Bacteriol. (1995) [Pubmed]
  10. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Syutsubo, K., Kishira, H., Harayama, S. Environ. Microbiol. (2001) [Pubmed]
  11. The high salt requirement of the moderate halophile Chromohalobacter salexigens DSM3043 can be met not only by NaCl but by other ions. O'Connor, K., Csonka, L.N. Appl. Environ. Microbiol. (2003) [Pubmed]
  12. Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Calderón, M.I., Vargas, C., Rojo, F., Iglesias-Guerra, F., Csonka, L.N., Ventosa, A., Nieto, J.J. Microbiology (Reading, Engl.) (2004) [Pubmed]
  13. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Golyshin, P.N., Martins Dos Santos, V.A., Kaiser, O., Ferrer, M., Sabirova, Y.S., Lünsdorf, H., Chernikova, T.N., Golyshina, O.V., Yakimov, M.M., Pühler, A., Timmis, K.N. J. Biotechnol. (2003) [Pubmed]
  14. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 1 21 78T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Fernández-Martínez, J., Pujalte, M.J., García-Martínez, J., Mata, M., Garay, E., Rodríguez-Valeral, F. Int. J. Syst. Evol. Microbiol. (2003) [Pubmed]
  15. Utilisation of aminomethane sulfonate by Chromohalobacter marismortui VH1. Ternan, N.G., McMullan, G. FEMS Microbiol. Lett. (2002) [Pubmed]
WikiGenes - Universities