The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

emrE  -  DLP12 prophage; multidrug resistance protein

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0534, JW0531, eb, mvrC
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of emrE


High impact information on emrE

  • In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins [5].
  • The TolC channel-tunnel spans the bacterial outer membrane and periplasm, providing a large exit duct for protein export and multidrug efflux when recruited by substrate-engaged inner membrane complexes [6].
  • Escherichia coli was found to encode 29 such pumps, and with the exception of the archaebacterium Methanococcus jannaschii, the numbers of multidrug efflux pumps encoded within genomes of the other organisms were found to be approximately proportional to their total numbers of encoded transport systems as well as to total genome size [7].
  • The DNA sequence of mvrC gene was determined and its deduced protein encoding a 12 kd hydrophobic protein was confirmed by maxicell labeling of MvrC protein [1].
  • Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps [8].

Chemical compound and disease context of emrE


Biological context of emrE


Anatomical context of emrE


Associations of emrE with chemical compounds

  • A new gene mvrC conferring resistance to methyl viologen, a powerful superoxide radical propagator, was cloned on 13.5 kilo base (kb) EcoRI DNA fragment [1].
  • Immunoblotting with antibody against AcrA, an obligatory component of the AcrAB multidrug efflux system, showed that this protein was overexpressed by >/=170% in 9 of 10 clinical isolates of Esherichia coli with high-level ciprofloxacin resistance (MICs, >/=32 microg/ml) but not in any of the 15 isolates for which the MIC was </=1 microg/ml [21].
  • Disruption of bexA in B. thetaiotaomicron made the strain more susceptible to norfloxacin, ciprofloxacin, and ethidium bromide, showing that this gene is expressed in this organism and functions as a multidrug efflux pump [22].
  • The contribution of the AcrAB multidrug efflux system to high-level tetracycline resistance was measured in a Tn10-carrying acrAB null mutant strain [23].
  • Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway [24].

Other interactions of emrE


Analytical, diagnostic and therapeutic context of emrE


  1. Cloning and characterization of the mvrC gene of Escherichia coli K-12 which confers resistance against methyl viologen toxicity. Morimyo, M., Hongo, E., Hama-Inaba, H., Machida, I. Nucleic Acids Res. (1992) [Pubmed]
  2. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. Yerushalmi, H., Lebendiker, M., Schuldiner, S. J. Biol. Chem. (1995) [Pubmed]
  3. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. Murray, D.S., Schumacher, M.A., Brennan, R.G. J. Biol. Chem. (2004) [Pubmed]
  4. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Nishino, K., Latifi, T., Groisman, E.A. Mol. Microbiol. (2006) [Pubmed]
  5. Regulation of bacterial drug export systems. Grkovic, S., Brown, M.H., Skurray, R.A. Microbiol. Mol. Biol. Rev. (2002) [Pubmed]
  6. Transition to the open state of the TolC periplasmic tunnel entrance. Andersen, C., Koronakis, E., Bokma, E., Eswaran, J., Humphreys, D., Hughes, C., Koronakis, V. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. Saier, M.H., Paulsen, I.T., Sliwinski, M.K., Pao, S.S., Skurray, R.A., Nikaido, H. FASEB J. (1998) [Pubmed]
  8. Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Stegmeier, J.F., Polleichtner, G., Brandes, N., Hotz, C., Andersen, C. Biochemistry (2006) [Pubmed]
  9. Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Viveiros, M., Jesus, A., Brito, M., Leandro, C., Martins, M., Ordway, D., Molnar, A.M., Molnar, J., Amaral, L. Antimicrob. Agents Chemother. (2005) [Pubmed]
  10. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Morita, Y., Kodama, K., Shiota, S., Mine, T., Kataoka, A., Mizushima, T., Tsuchiya, T. Antimicrob. Agents Chemother. (1998) [Pubmed]
  11. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Hansen, L.H., Johannesen, E., Burmølle, M., Sørensen, A.H., Sørensen, S.J. Antimicrob. Agents Chemother. (2004) [Pubmed]
  12. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Jo, J.T., Brinkman, F.S., Hancock, R.E. Antimicrob. Agents Chemother. (2003) [Pubmed]
  13. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Visalli, M.A., Murphy, E., Projan, S.J., Bradford, P.A. Antimicrob. Agents Chemother. (2003) [Pubmed]
  14. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. Kobayashi, A., Hirakawa, H., Hirata, T., Nishino, K., Yamaguchi, A. J. Bacteriol. (2006) [Pubmed]
  15. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. Elkins, C.A., Nikaido, H. J. Bacteriol. (2002) [Pubmed]
  16. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Srikumar, R., Kon, T., Gotoh, N., Poole, K. Antimicrob. Agents Chemother. (1998) [Pubmed]
  17. Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Zhang, L., Foxman, B., Manning, S.D., Tallman, P., Marrs, C.F. Infect. Immun. (2000) [Pubmed]
  18. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Lee, E.W., Huda, M.N., Kuroda, T., Mizushima, T., Tsuchiya, T. Antimicrob. Agents Chemother. (2003) [Pubmed]
  19. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. Yu, J.L., Grinius, L., Hooper, D.C. J. Bacteriol. (2002) [Pubmed]
  20. Proton-dependent multidrug efflux systems. Paulsen, I.T., Brown, M.H., Skurray, R.A. Microbiol. Rev. (1996) [Pubmed]
  21. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Mazzariol, A., Tokue, Y., Kanegawa, T.M., Cornaglia, G., Nikaido, H. Antimicrob. Agents Chemother. (2000) [Pubmed]
  22. A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Miyamae, S., Ueda, O., Yoshimura, F., Hwang, J., Tanaka, Y., Nikaido, H. Antimicrob. Agents Chemother. (2001) [Pubmed]
  23. Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli. de Cristóbal, R.E., Vincent, P.A., Salomón, R.A. J. Antimicrob. Chemother. (2006) [Pubmed]
  24. Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway. Su, C.C., Li, M., Gu, R., Takatsuka, Y., McDermott, G., Nikaido, H., Yu, E.W. J. Bacteriol. (2006) [Pubmed]
  25. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. Nishino, K., Yamaguchi, A. J. Bacteriol. (2001) [Pubmed]
  26. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. Lau, S.Y., Zgurskaya, H.I. J. Bacteriol. (2005) [Pubmed]
  27. The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. Guazzaroni, M.E., Krell, T., Felipe, A., Ruiz, R., Meng, C., Zhang, X., Gallegos, M.T., Ramos, J.L. J. Biol. Chem. (2005) [Pubmed]
  28. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. Yu, E.W., Aires, J.R., McDermott, G., Nikaido, H. J. Bacteriol. (2005) [Pubmed]
  29. Lipid-layer crystallization and preliminary three-dimensional structural analysis of AcrA, the periplasmic component of a bacterial multidrug efflux pump. Avila-Sakar, A.J., Misaghi, S., Wilson-Kubalek, E.M., Downing, K.H., Zgurskaya, H., Nikaido, H., Nogales, E. J. Struct. Biol. (2001) [Pubmed]
  30. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Xu, X.J., Su, X.Z., Morita, Y., Kuroda, T., Mizushima, T., Tsuchiya, T. Microbiol. Immunol. (2003) [Pubmed]
WikiGenes - Universities