The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

CADASIL

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CADASIL

  • To our knowledge, this is the first study showing that NOTCH3 mutation carriers may be at increased risk of early acute myocardial infarction, expanding CADASIL disease expression beyond the central nervous system to include the heart [1].
  • The new acronym "cerebral autosomal dominant arteriopathy with subcortical infarcts, leukoencephalopathy, and migraine" (CADASILM) is proposed to better describe this particular subvariety of CADASIL [2].
  • A novel mitochondrial DNA mutation and a mutation in the Notch3 gene in a patient with myopathy and CADASIL [3].
  • The clinical and radiological overlap between multiple sclerosis and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL; MIM 125310) raises the possibility of diagnostic confusion and suggests that pleiotropic effects of the Notch3 gene might include influencing susceptibility to multiple sclerosis [4].
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a systemic vascular disease caused by Notch 3 gene mutations [5].
 

Psychiatry related information on CADASIL

  • Mutations in the EGF repeats of the human Notch 3 receptor lead to the vascular dementia disease Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) [6].
  • Moreover, the human cerebral autosomal dominant artriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) syndrome of premature stroke and dementia is a heritable arteriopathy with alterations in vascular smooth muscle cells (VSMCs) resulting from mutations within Notch3 [7].
  • Recently, Notch receptors have been hypothesized to play a role in neurodegeneration and in particular in Alzheimer's disease (Notch1) and CADASIL (Notch3) [8].
 

High impact information on CADASIL

  • Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [9].
  • In this study, we investigated the effect of CADASIL mutations on Notch3 activity [10].
  • To address this issue, we have generated and analyzed stable cell lines expressing either wild-type murine Notch 3 (mNotch 3) or the mutant mNotch 3(R142C), which corresponds to the prevalent CADASIL form of Notch 3, Notch 3(R141C) in humans [6].
  • The vast majority of CADASIL mutations are missense mutations removing or inserting cysteine residues in the EGF repeats, but it is not yet clear whether these mutations primarily affect receptor trafficking, maturation, andor signaling [6].
  • We investigated whether O-fucosylation or Fringe-mediated elongation of O-fucose on Notch3 is impaired by CADASIL mutations [11].
 

Chemical compound and disease context of CADASIL

  • Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking [12].
  • RESULTS: 1H-MRSI-Patients with CADASIL showed significantly reduced NAA, Cho, Cr, and total metabolite content (Met(tot)) in WMH and NAWM [13].
  • No significant change in absolute CBF and CBV values was observed in the cortex of patients with CADASIL [12].
  • CONCLUSION: This study showed that cortical glucose metabolism is significantly lower in CADASIL patients than in healthy volunteers [14].
  • 1. In 18 out of the 21 Finnish CADASIL families so far identified, the causative mutation is an arginine to cysteine substitution in position 133 (R133C) [15].
 

Biological context of CADASIL

  • BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary syndrome caused by mutations of the Notch3 gene, usually localized to exons 3 and 4 [16].
  • The diagnosis of CADASIL was confirmed by molecular analysis (heterozygotes for the C406T mutation on exon 3 of the Notch3 gene) [17].
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is caused by point mutations in the Notch3 gene [18].
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations of Notch3 gene on chromosome 19 [19].
  • Our findings emphasize the importance of genetic analysis of NOTCH3 for Asians with a phenotype typical of CADASIL [20].
 

Anatomical context of CADASIL

 

Gene context of CADASIL

  • Mutations in the Notch3 receptor result in the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephelopathy (CADASIL) syndrome, a heritable arteriopathy predisposing to early onset stroke [21].
  • NOTCH3 mutation involving three cysteine residues in a family with typical CADASIL [26].
  • It is as yet unclear which disturbance in the Notch signaling pathway leads to the characteristic vascular pathology of CADASIL [27].
  • CADASIL is caused by mutations in the Notch3 gene [28].
  • OBJECTIVES: To understand the functional consequences of a recurrent CADASIL mutation on furin processing, cell surface expression, ligand binding, and activation of a downstream effector CBF1 by the Notch3 receptor [29].
 

Analytical, diagnostic and therapeutic context of CADASIL

References

  1. Myocardial infarction in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Lesnik Oberstein, S.A., Jukema, J.W., Van Duinen, S.G., Macfarlane, P.W., van Houwelingen, H.C., Breuning, M.H., Ferrari, M.D., Haan, J. Medicine (Baltimore) (2003) [Pubmed]
  2. New phenotype of the cerebral autosomal dominant arteriopathy mapped to chromosome 19: migraine as the prominent clinical feature. Vérin, M., Rolland, Y., Landgraf, F., Chabriat, H., Bompais, B., Michel, A., Vahedi, K., Martinet, J.P., Tournier-Lasserve, E., Lemaitre, M.H. J. Neurol. Neurosurg. Psychiatr. (1995) [Pubmed]
  3. A novel mitochondrial DNA mutation and a mutation in the Notch3 gene in a patient with myopathy and CADASIL. Finnilä, S., Tuisku, S., Herva, R., Majamaa, K. J. Mol. Med. (2001) [Pubmed]
  4. No association between multiple sclerosis and the Notch3 gene responsible for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Broadley, S.A., Sawcer, S.J., Chataway, S.J., Coraddu, F., Coles, A., Gray, J., Roxburgh, R., Clayton, D., Compston, D.A. J. Neurol. Neurosurg. Psychiatr. (2001) [Pubmed]
  5. Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Brulin, P., Godfraind, C., Leteurtre, E., Ruchoux, M.M. Acta Neuropathol. (2002) [Pubmed]
  6. A CADASIL-mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling. Karlström, H., Beatus, P., Dannaeus, K., Chapman, G., Lendahl, U., Lundkvist, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Coordinate Notch3-hairy-related transcription factor pathway regulation in response to arterial injury. Mediator role of platelet-derived growth factor and ERK. Wang, W., Campos, A.H., Prince, C.Z., Mou, Y., Pollman, M.J. J. Biol. Chem. (2002) [Pubmed]
  8. Long-lasting induction of Notch2 in the hippocampus of kainate-treated adult mice. Toninelli, G.F., Bernardi, C., Quarto, M., Lozza, G., Memo, M., Grilli, M. Neuroreport (2003) [Pubmed]
  9. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Chabriat, H., Vahedi, K., Iba-Zizen, M.T., Joutel, A., Nibbio, A., Nagy, T.G., Krebs, M.O., Julien, J., Dubois, B., Ducrocq, X. Lancet (1995) [Pubmed]
  10. Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Joutel, A., Monet, M., Domenga, V., Riant, F., Tournier-Lasserve, E. Am. J. Hum. Genet. (2004) [Pubmed]
  11. CADASIL mutations impair Notch3 glycosylation by Fringe. Arboleda-Velasquez, J.F., Rampal, R., Fung, E., Darland, D.C., Liu, M., Martinez, M.C., Donahue, C.P., Navarro-Gonzalez, M.F., Libby, P., D'Amore, P.A., Aikawa, M., Haltiwanger, R.S., Kosik, K.S. Hum. Mol. Genet. (2005) [Pubmed]
  12. Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Chabriat, H., Pappata, S., Ostergaard, L., Clark, C.A., Pachot-Clouard, M., Vahedi, K., Jobert, A., Le Bihan, D., Bousser, M.G. Stroke (2000) [Pubmed]
  13. Altered white and gray matter metabolism in CADASIL: a proton MR spectroscopy and 1H-MRSI study. Auer, D.P., Schirmer, T., Heidenreich, J.O., Herzog, J., Pütz, B., Dichgans, M. Neurology (2001) [Pubmed]
  14. Cortical hypometabolism and crossed cerebellar diaschisis suggest subcortically induced disconnection in CADASIL: an 18F-FDG PET study. Tatsch, K., Koch, W., Linke, R., Poepperl, G., Peters, N., Holtmannspoetter, M., Dichgans, M. J. Nucl. Med. (2003) [Pubmed]
  15. Detection of the founder effect in Finnish CADASIL families. Mykkänen, K., Savontaus, M.L., Juvonen, V., Sistonen, P., Tuisku, S., Tuominen, S., Penttinen, M., Lundkvist, J., Viitanen, M., Kalimo, H., Pöyhönen, M. Eur. J. Hum. Genet. (2004) [Pubmed]
  16. A novel mutation in the Notch3 gene in an Italian family with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: genetic and magnetic resonance spectroscopic findings. Oliveri, R.L., Muglia, M., De Stefano, N., Mazzei, R., Labate, A., Conforti, F.L., Patitucci, A., Gabriele, A.L., Tagarelli, G., Magariello, A., Zappia, M., Gambardella, A., Federico, A., Quattrone, A. Arch. Neurol. (2001) [Pubmed]
  17. Acute unilateral visual loss as the first symptom of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Rufa, A., De Stefano, N., Dotti, M.T., Bianchi, S., Sicurelli, F., Stromillo, M.L., D'Aniello, B., Federico, A. Arch. Neurol. (2004) [Pubmed]
  18. Coexistence of CADASIL and Alzheimer's disease. Thijs, V., Robberecht, W., De Vos, R., Sciot, R. J. Neurol. Neurosurg. Psychiatr. (2003) [Pubmed]
  19. Differential diagnosis of a vascular leukoencephalopathy within a CADASIL family: use of skin biopsy electron microscopy study and direct genotypic screening. Furby, A., Vahedi, K., Force, M., Larrouy, S., Ruchoux, M.M., Joutel, A., Tournier-Lasserve, E. J. Neurol. (1998) [Pubmed]
  20. Arg332Cys mutation of NOTCH3 gene in the first known Taiwanese family with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Tang, S.C., Lee, M.J., Jeng, J.S., Yip, P.K. J. Neurol. Sci. (2005) [Pubmed]
  21. Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. Wang, W., Prince, C.Z., Mou, Y., Pollman, M.J. J. Biol. Chem. (2002) [Pubmed]
  22. Cerebral microbleeds in CADASIL. Lesnik Oberstein, S.A., van den Boom, R., van Buchem, M.A., van Houwelingen, H.C., Bakker, E., Vollebregt, E., Ferrari, M.D., Breuning, M.H., Haan, J. Neurology (2001) [Pubmed]
  23. Detection of complement factor B in the cerebrospinal fluid of patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease using two-dimensional gel electrophoresis and mass spectrometry. Unlü, M., de Lange, R.P., de Silva, R., Kalaria, R., St Clair, D. Neurosci. Lett. (2000) [Pubmed]
  24. CADASIL imitating multiple sclerosis: the importance of MRI markers. O'Riordan, S., Nor, A.M., Hutchinson, M. Mult. Scler. (2002) [Pubmed]
  25. Two Japanese CADASIL families with a R141C mutation in the Notch3 gene. Murakami, T., Iwatsuki, K., Hayashi, T., Sato, K., Matsubara, E., Nagano, I., Manabe, Y., Shoji, M., Abe, K. Intern. Med. (2001) [Pubmed]
  26. NOTCH3 mutation involving three cysteine residues in a family with typical CADASIL. Dichgans, M., Herzog, J., Gasser, T. Neurology (2001) [Pubmed]
  27. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Kalimo, H., Ruchoux, M.M., Viitanen, M., Kalaria, R.N. Brain Pathol. (2002) [Pubmed]
  28. Cerebral small vessel diseases: cerebral microangiopathies. Ringelstein, E.B., Nabavi, D.G. Curr. Opin. Neurol. (2005) [Pubmed]
  29. Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. Haritunians, T., Chow, T., De Lange, R.P., Nichols, J.T., Ghavimi, D., Dorrani, N., St Clair, D.M., Weinmaster, G., Schanen, C. J. Neurol. Neurosurg. Psychiatr. (2005) [Pubmed]
  30. Diagnostic Notch3 sequence analysis in CADASIL: three new mutations in Dutch patients. Dutch CADASIL Research Group. Oberstein, S.A., Ferrari, M.D., Bakker, E., van Gestel, J., Kneppers, A.L., Frants, R.R., Breuning, M.H., Haan, J. Neurology (1999) [Pubmed]
  31. Genetic, clinical and pathological studies of CADASIL in Japan: a partial contribution of Notch3 mutations and implications of smooth muscle cell degeneration for the pathogenesis. Santa, Y., Uyama, E., Chui, d.e. .H., Arima, M., Kotorii, S., Takahashi, K., Tabira, T. J. Neurol. Sci. (2003) [Pubmed]
 
WikiGenes - Universities