The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Symbiosis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Symbiosis

 

High impact information on Symbiosis

  • Invertebrates at two Indian Ocean vent fields (Kairei and Edmond) belong to a sixth province, despite ecological settings and invertebrate-bacterial symbioses similar to those of both western Pacific and Atlantic vents [3].
  • These results indicate that nodulin 26 is a multifunctional AQP that confers water and glycerol transport to the SM, and likely plays a role in osmoregulation during legume/rhizobia symbioses [4].
  • In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes [5].
  • Recent phylogenetic studies have implied that all plants able to enter root nodule symbioses with nitrogen-fixing bacteria go back to a common ancestor (D.E. Soltis, P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd, and P.G. Martin, Proc. Natl. Acad. Sci. USA, 92:2647-2651, 1995) [6].
  • Chemotaxis may be important when forming cyanobacterial symbioses [7].
 

Chemical compound and disease context of Symbiosis

 

Associations of Symbiosis with chemical compounds

  • Anaerobic sulfide production is widespread among different thiotrophic symbioses from vent and non-vent sites (Riftia pachyptila, Calyptogena magnifica, Bathymodiolus thermophilus, Lucinoma aequizonata and Calyptogena elongata) [9].
  • In the last decade, large amounts of thiotaurine, an unusual sulphur-amino acid, have been reported in sulphur-based symbioses from hydrothermal vents and cold seeps [10].
  • Here, we show that sulfur-storing symbioses not only consume but also produce large amounts of hydrogen sulfide [9].
  • While the precise function (i.e. transport and/or storage of sulphide) of hypotaurine and thiotaurine has yet to be established, our results strongly support a general role for these free amino acids in the metabolism of sulphide in hydrothermal-vent thiotrophic symbioses [10].
  • In all cases, the symbioses developed were effective in fixing atmospheric dinitrogen [11].
 

Gene context of Symbiosis

References

  1. Novel expression pattern of cytosolic Gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Berry, A.M., Murphy, T.M., Okubara, P.A., Jacobsen, K.R., Swensen, S.M., Pawlowski, K. Plant Physiol. (2004) [Pubmed]
  2. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. van Slooten, J.C., Bhuvanasvari, T.V., Bardin, S., Stanley, J. Mol. Plant Microbe Interact. (1992) [Pubmed]
  3. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A., Gallant, R.M., Gotz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R., Vrijenhoek, R.C. Science (2001) [Pubmed]
  4. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Dean, R.M., Rivers, R.L., Zeidel, M.L., Roberts, D.M. Biochemistry (1999) [Pubmed]
  5. Comparison of nodule induction in legume and actinorhizal symbioses: the induction of actinorhizal nodules does not involve ENOD40. Santi, C., von Groll, U., Ribeiro, A., Chiurazzi, M., Auguy, F., Bogusz, D., Franche, C., Pawlowski, K. Mol. Plant Microbe Interact. (2003) [Pubmed]
  6. Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Laplaze, L., Duhoux, E., Franche, C., Frutz, T., Svistoonoff, S., Bisseling, T., Bogusz, D., Pawlowski, K. Mol. Plant Microbe Interact. (2000) [Pubmed]
  7. Cyanobacterial chemotaxis to extracts of host and nonhost plants. Nilsson, M., Rasmussen, U., Bergman, B. FEMS Microbiol. Ecol. (2006) [Pubmed]
  8. Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Clawson, M.L., Bourret, A., Benson, D.R. Mol. Phylogenet. Evol. (2004) [Pubmed]
  9. Anaerobic sulfur metabolism in thiotrophic symbioses. Arndt, C., Gaill, F., Felbeck, H. J. Exp. Biol. (2001) [Pubmed]
  10. Stimulatory effect of sulphide on thiotaurine synthesis in three hydrothermal-vent species from the East Pacific Rise. Pruski, A.M., Fiala-Médioni, A. J. Exp. Biol. (2003) [Pubmed]
  11. Characterization of an effective actinorhizal microsymbiont, Frankia sp. AvcI1 (Actinomycetales). Baker, D., Torrey, J.G. Can. J. Microbiol. (1980) [Pubmed]
  12. Enzymes of malate metabolism in Mesorhizobium ciceri CC 1192. Tabrett, C.A., Copeland, L. Can. J. Microbiol. (2002) [Pubmed]
  13. Post-genomic insights into plant nodulation symbioses. Gresshoff, P.M. Genome Biol. (2003) [Pubmed]
 
WikiGenes - Universities