The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Nitrogen Fixation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nitrogen Fixation


High impact information on Nitrogen Fixation

  • One set of these genes encodes the subunits of nitrogenase, the enzyme responsible for the reduction of atmospheric dinitrogen to ammonia, and another set consists of closely linked genes also essential for nitrogen fixation [6].
  • Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean [7].
  • Nitrogen fixation. Endocrine disrupters and flavonoid signalling [8].
  • This finding suggests a specific role for ATP in cell division, nodulation during nitrogen fixation and protein export, and allows us to assign a probable function to one of the protein components from each of these systems [9].
  • Comparing the energy required by legumes for symbiotic nitrogen fixation with that of assimilation of nitrate, Gibson concluded the costs to be about the same [10].

Chemical compound and disease context of Nitrogen Fixation


Biological context of Nitrogen Fixation


Associations of Nitrogen Fixation with chemical compounds


Gene context of Nitrogen Fixation

  • However, ntrC is not required for nitrogen fixation by A. vinelandii, in contrast with K. pneumoniae where both ntrA and ntrC are essential [25].
  • These results identify the glnF product as a new sigma factor specifically required for the transcription of nitrogen-regulated and of nitrogen-fixation promoters [26].
  • The predicted HupL polypeptide is homologous to the large subunit of [NiFe] uptake hydrogenases. hupL is expressed similarly to the nitrogen-fixation genes; hupL message was detected only during the late stages of heterocyst development [27].
  • This mutant (NGR omega nodD2) was deficient in nitrogen fixation on Vigna unguiculata and induced pseudonodules on Tephrosia vogelii [28].
  • The glbN gene for the hemoglobin of Synechoccocus sp. PCC 7002, a cyanobacterium incapable of nitrogen fixation, was cloned and overexpressed in Escherichia coli [29].

Analytical, diagnostic and therapeutic context of Nitrogen Fixation


  1. Glutamine synthetase and control of nitrogen fixation in Rhizobium. Ludwig, R.A., Signer, E.R. Nature (1977) [Pubmed]
  2. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae. Hill, S., Kennedy, C., Kavanagh, E., Goldberg, R.B., Hanau, R. Nature (1981) [Pubmed]
  3. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Elsen, S., Swem, L.R., Swem, D.L., Bauer, C.E. Microbiol. Mol. Biol. Rev. (2004) [Pubmed]
  4. Second gene (nifH*) coding for a nitrogenase iron protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. Robson, R., Woodley, P., Jones, R. EMBO J. (1986) [Pubmed]
  5. Clostridial pyruvate oxidoreductase and the pyruvate-oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes. Wahl, R.C., Orme-Johnson, W.H. J. Biol. Chem. (1987) [Pubmed]
  6. Structural relationships among Rhizobium meliloti symbiotic promoters. Better, M., Lewis, B., Corbin, D., Ditta, G., Helinski, D.R. Cell (1983) [Pubmed]
  7. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Sañudo-Wilhelmy, S.A., Kustka, A.B., Gobler, C.J., Hutchins, D.A., Yang, M., Lwiza, K., Burns, J., Capone, D.G., Raven, J.A., Carpenter, E.J. Nature (2001) [Pubmed]
  8. Nitrogen fixation. Endocrine disrupters and flavonoid signalling. Fox, J.E., Starcevic, M., Kow, K.Y., Burow, M.E., McLachlan, J.A. Nature (2001) [Pubmed]
  9. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Higgins, C.F., Hiles, I.D., Salmond, G.P., Gill, D.R., Downie, J.A., Evans, I.J., Holland, I.B., Gray, L., Buckel, S.D., Bell, A.W. Nature (1986) [Pubmed]
  10. Energy requirement for symbiotic nitrogen fixation. Silsbury, J.H. Nature (1977) [Pubmed]
  11. A crucial arginine residue is required for a conformational switch in NifL to regulate nitrogen fixation in Azotobacter vinelandii. Martinez-Argudo, I., Little, R., Dixon, R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  12. Activation of Klebsiella pneumoniae and Rhizobium meliloti nitrogenase promoters by gln (ntr) regulatory proteins. Sundaresan, V., Ow, D.W., Ausubel, F.M. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  13. Characteristics of NIFNE in Azotobacter vinelandii strains. Implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase. Roll, J.T., Shah, V.K., Dean, D.R., Roberts, G.P. J. Biol. Chem. (1995) [Pubmed]
  14. Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman spectroscopic studies. Miyatake, H., Mukai, M., Park, S.Y., Adachi, S., Tamura, K., Nakamura, H., Nakamura, K., Tsuchiya, T., Iizuka, T., Shiro, Y. J. Mol. Biol. (2000) [Pubmed]
  15. Molecular structure of the oxidized, recombinant, heterocyst [2Fe-2S] ferredoxin from Anabaena 7120 determined to 1.7-A resolution. Jacobson, B.L., Chae, Y.K., Markley, J.L., Rayment, I., Holden, H.M. Biochemistry (1993) [Pubmed]
  16. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Land, T., Rouault, T.A. Mol. Cell (1998) [Pubmed]
  17. Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W.C., Dixon, R. EMBO J. (2000) [Pubmed]
  18. Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Perret, X., Broughton, W.J., Brenner, S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  19. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Sullivan, J.T., Ronson, C.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  20. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. Dubbs, J.M., Tabita, F.R. FEMS Microbiol. Rev. (2004) [Pubmed]
  21. Nitrogenases without molybdenum. Pau, R.N. Trends Biochem. Sci. (1989) [Pubmed]
  22. Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Wood, N.T. Trends Plant Sci. (2001) [Pubmed]
  23. Structural insights into a protein-bound iron-molybdenum cofactor precursor. Corbett, M.C., Hu, Y., Fay, A.W., Ribbe, M.W., Hedman, B., Hodgson, K.O. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  24. Inorganic nitrogen metabolism in bacteria. Richardson, D.J., Watmough, N.J. Current opinion in chemical biology. (1999) [Pubmed]
  25. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. Toukdarian, A., Kennedy, C. EMBO J. (1986) [Pubmed]
  26. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Hunt, T.P., Magasanik, B. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  27. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Carrasco, C.D., Buettner, J.A., Golden, J.W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  28. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Fellay, R., Hanin, M., Montorzi, G., Frey, J., Freiberg, C., Golinowski, W., Staehelin, C., Broughton, W.J., Jabbouri, S. Mol. Microbiol. (1998) [Pubmed]
  29. Truncated hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein. Scott, N.L., Falzone, C.J., Vuletich, D.A., Zhao, J., Bryant, D.A., Lecomte, J.T. Biochemistry (2002) [Pubmed]
  30. The nifA gene product from Rhizobium leguminosarum biovar trifolii lacks the N-terminal domain found in other NifA proteins. Iismaa, S.E., Watson, J.M. Mol. Microbiol. (1989) [Pubmed]
  31. The Bradyrhizobium japonicum fixBCX operon: identification of fixX and of a 5' mRNA region affecting the level of the fixBCX transcript. Gubler, M., Zürcher, T., Hennecke, H. Mol. Microbiol. (1989) [Pubmed]
  32. The nifH promoter region of Rhizobium leguminosarum: nucleotide sequence and promoter elements controlling activation by NifA protein. Roelvink, P.W., Harmsen, M., van Kammen, A., van den Bos, R.C. Gene (1990) [Pubmed]
  33. nif gene expression in a Nif+, Fix- Bradyrhizobium japonicum variant. Bradburne, J.A., Mathis, J.N., Israel, D.W. FEMS Microbiol. Lett. (1994) [Pubmed]
WikiGenes - Universities