The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

malate     2-hydroxybutanedioate

Synonyms: Malate, L-, malate anion, malate dianion, AG-K-61370, CHEBI:15595, ...
This record was replaced with 525.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aepfelsaeure

  • Linkage group V of platyfishes and Swordtails of the genus Xiphophorus (Poeciliidae): linkage of loci for malate dehydrogenase-2 and esterase-1 and esterase-4 with a gene controlling the severity of hybrid melanomas [1].
  • We have introduced efficient pathways for malate degradation in S. cerevisiae by cloning and expressing the Schizosaccharomyces pombe malate permease (mae1) gene with either the S. pombe malic enzyme (mae2) or Lactococcus lactis malolactic (mleS) gene in this yeast [2].
  • Two kaempferol glycosides remained largely unaffected, and sinapoyl malate decreased strongly upon bacterial infection with a time course inversely correlated with that of the accumulating tryptophan-related products [3].
  • Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding [4].
  • Thus, strains of Lactobacillus casei and enterococci readily grow at the expense of substrates such as gluconate, malate and pentitols [5].
 

Psychiatry related information on Aepfelsaeure

 

High impact information on Aepfelsaeure

 

Chemical compound and disease context of Aepfelsaeure

 

Biological context of Aepfelsaeure

 

Anatomical context of Aepfelsaeure

  • Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells [18].
  • Superfusion of guard cell protoplasts with malate solutions in the physiological range caused the voltage-gate to shift towards hyperpolarized potentials (Km(mal) = 0.4 mM elicits a 38 mV shift) [18].
  • The midpoint redox potential of -315 mV places 2-Cys Prx reduction after Calvin cycle activation and before switching the malate valve for export of excess reduction equivalents to the cytosol [22].
  • To fulfil many of these roles, malate has to be accumulated within the large central vacuole [23].
  • Physiological analysis of a transferred DNA knockout mutant for AtALMT1 as well as electrophysiological examination of the protein expressed in Xenopus oocytes showed that AtALMT1 is critical for Arabidopsis Al tolerance and encodes the Al-activated root malate efflux transporter associated with tolerance [24].
 

Associations of Aepfelsaeure with other chemical compounds

 

Gene context of Aepfelsaeure

 

Analytical, diagnostic and therapeutic context of Aepfelsaeure

  • We suggest that stomata sense changes in the intercellular CO2 concentration and thus the photosynthetic activity of the mesophyll via feedback regulation of anion efflux from guard cells through malate-sensitive GCAC1 [18].
  • The amino acids for substrate and cofactor binding identified by x-ray crystallography for pig heart cytoplasmic malate dehydrogenase are conserved in the 319-amino-acid-long mature plant enzyme [34].
  • The result confirms the stereochemistry of the malate/succinate transformation, as well as the NAD+/NADH interconversion, and demonstrates the usefulness of the single-crystal neutron diffraction method for determining the absolute configuration of molecules having a chiral monodeuteriomethylene group [35].
  • Malate thiokinase has been purified to apparent homogeneity by employing conventional purification techniques along with affinity chromatography [36].
  • When fluorescence titrations were used to monitor the ability of cytoplasmic malate dehydrogenase to form a binary complex with NADH and to form a ternary complex with NADH and hydroxymalonate, only the formation of ternary complex seemed to be effected by arginine modification [37].

References

  1. Linkage group V of platyfishes and Swordtails of the genus Xiphophorus (Poeciliidae): linkage of loci for malate dehydrogenase-2 and esterase-1 and esterase-4 with a gene controlling the severity of hybrid melanomas. Morizot, D.C., Siciliano, M.J. J. Natl. Cancer Inst. (1983) [Pubmed]
  2. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Volschenk, H., Viljoen, M., Grobler, J., Petzold, B., Bauer, F., Subden, R.E., Young, R.A., Lonvaud, A., Denayrolles, M., van Vuuren, H.J. Nat. Biotechnol. (1997) [Pubmed]
  3. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Hagemeier, J., Schneider, B., Oldham, N.J., Hahlbrock, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Török, Z., Goloubinoff, P., Horváth, I., Tsvetkova, N.M., Glatz, A., Balogh, G., Varvasovszki, V., Los, D.A., Vierling, E., Crowe, J.H., Vigh, L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  5. Uncommon pathways of metabolism among lactic acid bacteria. London, J. FEMS Microbiol. Rev. (1990) [Pubmed]
  6. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Brown, D.A., Cook, R.A. Biochemistry (1981) [Pubmed]
  7. Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. Op den Velde, W., Stam, F.C. Journal of the American Geriatrics Society. (1976) [Pubmed]
  8. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II. Clarke, A.R., Atkinson, T., Holbrook, J.J. Trends Biochem. Sci. (1989) [Pubmed]
  9. Insulin resistance in uremia. Characterization of lipid metabolism in freshly isolated and primary cultures of hepatocytes from chronic uremic rats. Caro, J.F., Lanza-Jacoby, S. J. Clin. Invest. (1983) [Pubmed]
  10. Biochemical studies on mitochondria isolated from Normal and Neoplastic Tissues of the Mouse Mammary Gland. White, M.T., Nandi, S. J. Natl. Cancer Inst. (1976) [Pubmed]
  11. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Trounce, I., Byrne, E., Marzuki, S. Lancet (1989) [Pubmed]
  12. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. Palmieri, L., Pardo, B., Lasorsa, F.M., del Arco, A., Kobayashi, K., Iijima, M., Runswick, M.J., Walker, J.E., Saheki, T., Satrústegui, J., Palmieri, F. EMBO J. (2001) [Pubmed]
  13. Mitochondrial malic enzymes. Mitochondrial NAD(P)+-dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas. Sauer, L.A., Dauchy, R.T., Nagel, W.O., Morris, H.P. J. Biol. Chem. (1980) [Pubmed]
  14. Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. Wei, Y., Guffanti, A.A., Ito, M., Krulwich, T.A. J. Biol. Chem. (2000) [Pubmed]
  15. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. Marty-Teysset, C., Lolkema, J.S., Schmitt, P., Divies, C., Konings, W.N. J. Biol. Chem. (1995) [Pubmed]
  16. Alteration of the specificity of malate dehydrogenase by chemical modulation of an active site arginine. Wright, S.K., Viola, R.E. J. Biol. Chem. (2001) [Pubmed]
  17. Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus. Shaw, J.G., Hamblin, M.J., Kelly, D.J. Mol. Microbiol. (1991) [Pubmed]
  18. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. Hedrich, R., Marten, I. EMBO J. (1993) [Pubmed]
  19. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Cozzone, A.J. Annu. Rev. Microbiol. (1998) [Pubmed]
  20. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Seo, J.S., Chong, H., Park, H.S., Yoon, K.O., Jung, C., Kim, J.J., Hong, J.H., Kim, H., Kim, J.H., Kil, J.I., Park, C.J., Oh, H.M., Lee, J.S., Jin, S.J., Um, H.W., Lee, H.J., Oh, S.J., Kim, J.Y., Kang, H.L., Lee, S.Y., Lee, K.J., Kang, H.S. Nat. Biotechnol. (2005) [Pubmed]
  21. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Reiskind, J.B., Bowes, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  22. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. König, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schürmann, P., Dietz, K.J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  23. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Emmerlich, V., Linka, N., Reinhold, T., Hurth, M.A., Traub, M., Martinoia, E., Neuhaus, H.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  24. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Hoekenga, O.A., Maron, L.G., Piñeros, M.A., Cançado, G.M., Shaff, J., Kobayashi, Y., Ryan, P.R., Dong, B., Delhaize, E., Sasaki, T., Matsumoto, H., Yamamoto, Y., Koyama, H., Kochian, L.V. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  25. Submitochondrial localization and function of enzymes of glutamine metabolism in avian liver. Vorhaben, J.E., Campbell, J.W. J. Cell Biol. (1977) [Pubmed]
  26. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Wu, G., Fiser, A., ter Kuile, B., Sali, A., Müller, M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Rzem, R., Veiga-da-Cunha, M., Noël, G., Goffette, S., Nassogne, M.C., Tabarki, B., Schöller, C., Marquardt, T., Vikkula, M., Van Schaftingen, E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  28. The oxygen and carbon dioxide compensation points of C3 plants: possible role in regulating atmospheric oxygen. Tolbert, N.E., Benker, C., Beck, E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  29. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis. Chen, O.S., Hemenway, S., Kaplan, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  30. Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae. Thompson, L.M., McAlister-Henn, L. J. Biol. Chem. (1989) [Pubmed]
  31. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. Minard, K.I., McAlister-Henn, L. J. Biol. Chem. (1992) [Pubmed]
  32. Identification of dicarboxylate carrier Slc25a10 as malate transporter in de novo fatty acid synthesis. Mizuarai, S., Miki, S., Araki, H., Takahashi, K., Kotani, H. J. Biol. Chem. (2005) [Pubmed]
  33. Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. Rai, R., Daugherty, J.R., Cunningham, T.S., Cooper, T.G. J. Biol. Chem. (1999) [Pubmed]
  34. Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Gietl, C. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  35. Determination of the absolute configuration of (-)-(2R)-succinic-2-d acid by neutron diffraction study: unambiguous proof of the absolute stereochemistry of the NAD+/NADH interconversion. Yuan, H.S., Stevens, R.C., Fujita, S., Watkins, M.I., Koetzle, T.F., Bau, R. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  36. Substrate-dependent dissociation of malate thiokinase. Elwell, M., Hersh, L.B. J. Biol. Chem. (1979) [Pubmed]
  37. Identification of essential arginyl residues in cytoplasmic malate dehydrogenase with butanedione. Bleile, D.M., Foster, M., Brady, J.W., Harrison, J.H. J. Biol. Chem. (1975) [Pubmed]
 
WikiGenes - Universities