The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Novel substrates of Escherichia coli nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals.

Escherichia coli Nth protein ( endonuclease III) is a DNA glycosylase with a broad substrate specificity for pyrimidine derivatives. We discovered novel substrates of E. coli Nth protein using gas chromatography/isotope-dilution mass spectrometry and DNA samples, which were damaged by gamma-irradiation or by H(2)O(2)/Fe(III)-EDTA/ascorbic acid. These were 4, 6-diamino-5-formamidopyrimidine, 5,6-dihydroxyuracil, and 5, 6-dihydroxycytosine. The first compound was recognized for the first time as a purine-derived substrate of the enzyme. We also investigated kinetics of excision of a multitude of modified bases from three damaged DNA substrates. Excision of modified bases was determined as a function of enzyme concentration, incubation time, and substrate concentration. Excision followed Michaelis-Menten kinetics. Kinetic parameters were determined for the following modified bases: 4,6-diamino-5-formamidopyrimidine, cis- and trans-thymine glycols, 5-hydroxycytosine, cis- and trans-uracil glycols, 5-hydroxyuracil, 5-hydroxy-5-methylhydantoin, alloxan, 5, 6-dihydroxycytosine, 5,6-dihydroxyuracil, 5-hydroxy-6-hydrothymine, and 5-hydroxy-6-hydrouracil. The results show that three newly discovered substrates were excised by the enzyme with a preference similar to excision of its known major substrates such as thymine glycol and 5-hydroxycytosine. Excision kinetics significantly depended on the nature of the damaged DNA substrates in agreement with previous results on other DNA glycosylases. Specificity constants (k(cat)/K(M)) of E. coli Nth protein were compared to those of its previously investigated functional homologues such as human and Schizosaccharomyces pombe Nth proteins and Saccharomyces cerevisiae Ntg1 and Ntg2 proteins. This comparison shows that significant differences exist with respect to substrate specificity and kinetic parameters despite extensive structural conservation among the Nth homologues.[1]

References

 
WikiGenes - Universities