The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Isolation and characterization of a new immortal rat astrocyte with a high expression of NGF mRNA.

We have established a new line of immortalized rat astrocytes through transfection of plasmid pSV3-neo encoding the large T antigen of simian virus 40 into normal astrocytes. One of these immortalized astrocytes (ACT-57) with a flat and polygonal cell shape, exhibited stable growth in a chemically defined medium (modified N-2 medium) as well as in medium containing ordinary serum. ACT-57, retained a detectable level of expression of glial fibrillary acidic protein (GFAP) and its mRNA, and exhibited a stronger expression of nerve growth factor (NGF) mRNA than that of normal rat astrocytes or C6 glioma cells. NGF mRNA was significantly up-regulated by phorbol ester (12-O-tetradecanoylphorbol 13-acetate, TPA) and gamma-amino-n-butyric acid (GABA) but not by hydrocortisone. None of stimulants (TPA, dibutyryl cyclic AMP (db-cAMP), hydrocortisone, L-glutamate, carbacol, GABA, dopamine, or isoproterenol) changed the expression level of either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). There was a discrete difference between ACT-57 and normal astrocytes in the response to GABA and isoproterenol. These findings imply that normal cortical astrocytes possess a functional heterogeneity whereas the clonal astrocyte, ACT-57, does not, indicating that ACT-57 cells may be useful for in vitro studies of neuron-astrocyte interactions involving the induction of neurotrophic factors such as NGF.[1]

References

  1. Isolation and characterization of a new immortal rat astrocyte with a high expression of NGF mRNA. Morikawa, M., Asai, K., Kokubo, M., Fujita, K., Yoneda, K., Yamamoto, N., Inoue, Y., Iida, J., Kishimoto, T., Kato, T. Neurosci. Res. (2001) [Pubmed]
 
WikiGenes - Universities