The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Potentiation of insulin-related signal transduction by a novel protein-tyrosine phosphatase inhibitor, Et-3,4-dephostatin, on cultured 3T3-L1 adipocytes.

We previously isolated dephostatin from Streptomyces as a novel inhibitor of CD45-associated protein-tyrosine phosphatase. We prepared Et-3,4-dephostatin as a stable analogue and found it to inhibit PTP-1B and SHPTP-1 protein-tyrosine phosphatases selectively but not to inhibit CD45 and leukocyte common antigen-related phosphatase ones effectively. Et-3,4-dephostatin increased the tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 with or without insulin in differentiated 3T3-L1 mouse adipocytes. The increase of tyrosine phosphorylation by Et-3,4-dephostatin was more prominent in 6-h than in 30-min incubation. It also increased phosphorylation and activation of Akt with or without insulin. Et-3,4-dephostatin also enhanced translocation of glucose transporter 4 from the cytoplasm to the membrane and 2-deoxy-glucose transport. Et-3,4-dephostatin-induced glucose uptake was inhibited by SB203580, a p38 inhibitor, but not by PD98059, a MEK inhibitor, or by cycloheximide as insulin-induced uptake. Interestingly, although LY294002, a phosphatidylinositol 3-kinase inhibitor, inhibited the insulin-induced glucose uptake completely, it only partially inhibited the Et-3,4-dephostatin-induced uptake. It also blocked insulin-induced glucose transporter 4 translocation but not the Et-3,4-dephostatin-induced one. The increase in c-Cbl tyrosine phosphorylation caused by Et-3,4-dephostatin was stronger than that in insulin receptor phosphorylation. These observations indicate that a phosphatidylinositol 3-kinase-independent pathway involving c-Cbl is more important in Et-3,4-dephostatin-induced glucose uptake than in insulin-induced uptake. Et-3,4-dephostatin showed an in vivo antidiabetic effect in terms of reducing the high blood glucose level in KK-A(y) mice after oral administration. Thus, Et-3,4-dephostatin potentiated insulin-related signal transductions in cultured mouse adipocytes and showed an antidiabetic effect in mice.[1]

References

 
WikiGenes - Universities