The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Acute in vivo effects of insulin on gene expression in adipose tissue in insulin-resistant and insulin-sensitive subjects.

AIMS/HYPOTHESIS: We determined the response of selected genes to in vivo insulin in adipose tissue in 21 non-diabetic women. MATERIALS AND METHODS: The women were divided into insulin-sensitive and -resistant groups based on their median whole-body insulin sensitivity (8.7+/-0.4 vs 4.2+/-0.3 mg kg(-1) min(-1) for insulin-sensitive vs -resistant group). Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 h of i.v. maintained euglycaemic hyperinsulinaemia. Adipose tissue mRNA concentrations of facilitated glucose transporter, member 1 (SLC2A1, previously known as GLUT1), facilitated glucose transporter, member 4 (SLC2A4, previously known as GLUT4), peroxisome proliferator-activated receptor gamma ( PPARG), peroxisome proliferator-activated receptor gamma co-activator 1alpha (PPARGC1A), 11beta-hydroxysteroid dehydrogenase-1 (HSD11B1), TNF, adiponectin (ADIPOQ), IL6 and the macrophage marker CD68 were measured using real-time PCR. RESULTS: Basal expression of 'insulin-sensitivity genes' SLC2A4 and ADIPOQ was lower while that of 'insulin-resistance genes', HSD11B1 and IL6 was significantly higher in the insulin-resistant than in the insulin-sensitive group. Insulin significantly increased expression of 'insulin-sensitivity genes' SLC2A4, PPARG, PPARGC1A and ADIPOQ in the insulin-sensitive group, while only expression of PPARG and PPARGC1A was increased in the insulin-resistant group. The expression of 'insulin-resistance genes' HSD11B1 and IL6 was increased by insulin in the insulin-resistant group, but insulin failed to increase HSD11B1 expression in the insulin-sensitive group. At 6 h, expression of HSD11B1, TNF and IL6 was significantly higher in the insulin-resistant than in the insulin-sensitive group. IL6 expression increased significantly more in response to insulin in the insulin-resistant than in the insulin-sensitive group. CD68 was overexpressed in the insulin-resistant as compared with the insulin-sensitive group at both 0 and 6 h. CONCLUSIONS/INTERPRETATION: These data suggest that genes adversely affecting insulin sensitivity hyperrespond to insulin, while genes enhancing insulin sensitivity hyporespond to insulin in insulin-resistant human adipose tissue in vivo.[1]

References

  1. Acute in vivo effects of insulin on gene expression in adipose tissue in insulin-resistant and insulin-sensitive subjects. Westerbacka, J., Cornér, A., Kannisto, K., Kolak, M., Makkonen, J., Korsheninnikova, E., Nyman, T., Hamsten, A., Fisher, R.M., Yki-Järvinen, H. Diabetologia (2006) [Pubmed]
 
WikiGenes - Universities