The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD68  -  CD68 molecule

Homo sapiens

Synonyms: DKFZp686M18236, GP110, Gp110, LAMP4, Macrosialin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD68

  • Staining for CD68 also revealed that the grafts had undergone reorganization of the tissue, possibly as a result of fibroblast hyperplasia [1].
  • Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population [2].
  • Marked apoptosis of CD68-negative type II pneumocytes (30 to 80%) was detected in four of the seven (57%) cases of acute lung injury [3].
  • A substantial increase in MPs was observed in CNS tissue from patients with HIVE, relative to seronegative controls and patients with acquired immune deficiency syndrome but without encephalitis, as determined by CD68 and CD16 immunohistochemistry [4].
  • There was a significant association between infiltration of CD8, CD20, and CD68-positive cells after BCG therapy and therapeutic effects [5].

Psychiatry related information on CD68

  • Finally the increased expression of MHC II and CD68 detected in drug abusers with HIVE compared to nondrug abusers with HIVE suggests that the combination of drug abuse and HIV infection has a greater deleterious effect on the brain than either individual insult on its own [6].
  • We have, therefore, examined six brains from cases of sporadic CJD by immunohistochemical labelling of grey and white matter microglia from frontal, parietal, temporal, and occipital lobes, striatum, thalamus, cerebellum and brain stem with RCA-1, LCA, CD68, HLA-DR, and HAM56 [7].

High impact information on CD68


Chemical compound and disease context of CD68


Biological context of CD68

  • This study also suggests that CD68+ cells are instrumental in the chondrolysis process while vascular cells (endothelial and myoid cells) may be the critical microenvironment at the onset of hematopoiesis [18].
  • We have isolated cDNA clones encoding CD68 from a U937 cDNA library by transient expression in COS cells and panning with the anti-CD68 monoclonal antibodies (MoAbs) Y2/131, Y1/82A, EBM11, and Ki-M6 [19].
  • Both CD68 and peroxisome proliferator-activated receptor-gamma gene expression were increased in the poorly controlled diabetic group (P < 0.05 for each), whose monocytes also displayed increased attachment to endothelial monolayers (P < 0.0005 vs. nondiabetic control subjects) [20].
  • RESULTS: mRNA levels of specific macrophage markers (CD68 and CD14) are correlated with adiposity in sc AT and visceral AT (P < 0.05) [21].
  • From 11 to 14 weeks of gestation, CD68-positive and CD40-positive cells, like MHC class II--positive cells, were present throughout the lamina propria; few CD3-positive cells (T cells) were observed [22].

Anatomical context of CD68

  • Despite expressing antigens in common with blood monocytes, monocyte-derived dendritic cells, and macrophages, NLCs expressed significantly higher levels of CD68 than these other cell types [23].
  • CD68 is a 110-Kd transmembrane glycoprotein of unknown function highly expressed by human monocytes and tissue macrophages [19].
  • Consistent with the notion that NLCs are present in vivo, CD14+ splenocytes from CLL patients have NLC morphology and express significantly higher levels of CD68 than CD14+ splenocytes from persons without known B-cell malignancy [23].
  • CD68 transcripts are constitutively present in the promonocyte cell line U937 and are upregulated by phorbol myristic acid (PMA) [19].
  • Double immunostaining with the anti-ER MAb and with specific MAb to detect different macrophage antigens (Ber-MAC3, MAC387, CD68) and CD8+ T cell subsets (CD29+, CD45RO+ and CD29-, CD45RO-) was performed [24].

Associations of CD68 with chemical compounds


Physical interactions of CD68

  • Exogenous JunB restored AP-1 DNA-binding but did not prevent inhibition of macrosialin expression by C/EBPalpha-ER, indicating that JunB is not the only target relevant to inhibition of monopoiesis by C/EBPalpha [30].
  • Accumulation of macrophages labeled with monoclonal antibodies against CD 68 and major histocompatibility complex class II antigens were observed around the massive amyloid deposits [31].

Co-localisations of CD68


Regulatory relationships of CD68


Other interactions of CD68

  • Freshly isolated CD34+ CB cells were negative for LZ and LF, and only small proportions expressed MPO (4% +/- 2%) or CD68 (3% +/- 1%) [40].
  • Conversely, brain-derived macrophages did not express antigens CD4, CD14, or CD68/Ki-M6, which are easily detected on freshly isolated monocytes [41].
  • Double immunostaining showed no coexpression of BMPR-positive cells with CD68, CD34, or CD3 [42].
  • Double-immunolabelling for poly(ADP-ribose) and markers of neuronal, astrocytic and microglial differentiation (MAP2, GFAP and CD68, respectively) showed many of the cells containing poly(ADP-ribose) to be neurons [43].
  • These data suggest that beta2GPI can bind cells that fail to maintain membrane lipid asymmetry and generate a specific bridging moiety that is recognized for clearance by a phagocyte receptor that is distinct from CD36, CD68, and CD14 [44].

Analytical, diagnostic and therapeutic context of CD68


  1. Inflammation, immune reactivity, and angiogenesis in a severe combined immunodeficiency model of rheumatoid arthritis. Davis, L.S., Sackler, M., Brezinschek, R.I., Lightfoot, E., Bailey, J.L., Oppenheimer-Marks, N., Lipsky, P.E. Am. J. Pathol. (2002) [Pubmed]
  2. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability. Perlman, H., Georganas, C., Pagliari, L.J., Koch, A.E., Haines, K., Pope, R.M. J. Immunol. (2000) [Pubmed]
  3. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Bardales, R.H., Xie, S.S., Schaefer, R.F., Hsu, S.M. Am. J. Pathol. (1996) [Pubmed]
  4. Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Fischer-Smith, T., Croul, S., Adeniyi, A., Rybicka, K., Morgello, S., Khalili, K., Rappaport, J. Am. J. Pathol. (2004) [Pubmed]
  5. Effect of human leukocyte antigen class I expression of tumor cells on outcome of intravesical instillation of bacillus calmette-guerin immunotherapy for bladder cancer. Kitamura, H., Torigoe, T., Honma, I., Sato, E., Asanuma, H., Hirohashi, Y., Sato, N., Tsukamoto, T. Clin. Cancer Res. (2006) [Pubmed]
  6. Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Anthony, I.C., Ramage, S.N., Carnie, F.W., Simmonds, P., Bell, J.E. Neuropathol. Appl. Neurobiol. (2005) [Pubmed]
  7. Reactive microglia in Creutzfeldt-Jakob disease. Mühleisen, H., Gehrmann, J., Meyermann, R. Neuropathol. Appl. Neurobiol. (1995) [Pubmed]
  8. A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. de Saint-Vis, B., Vincent, J., Vandenabeele, S., Vanbervliet, B., Pin, J.J., Aït-Yahia, S., Patel, S., Mattei, M.G., Banchereau, J., Zurawski, S., Davoust, J., Caux, C., Lebecque, S. Immunity (1998) [Pubmed]
  9. Characterization of a novel Hodgkin cell line, HD-MyZ, with myelomonocytic features mimicking Hodgkin's disease in severe combined immunodeficient mice. Bargou, R.C., Mapara, M.Y., Zugck, C., Daniel, P.T., Pawlita, M., Döhner, H., Dörken, B. J. Exp. Med. (1993) [Pubmed]
  10. Obesity is associated with macrophage accumulation in adipose tissue. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., Ferrante, A.W. J. Clin. Invest. (2003) [Pubmed]
  11. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. Takahashi, Y., Bucana, C.D., Liu, W., Yoneda, J., Kitadai, Y., Cleary, K.R., Ellis, L.M. J. Natl. Cancer Inst. (1996) [Pubmed]
  12. Tissue localization of beta receptors for platelet-derived growth factor and platelet-derived growth factor B chain during wound repair in humans. Reuterdahl, C., Sundberg, C., Rubin, K., Funa, K., Gerdin, B. J. Clin. Invest. (1993) [Pubmed]
  13. Expression of CD163 in dermatofibroma, cellular fibrous histiocytoma, and dermatofibrosarcoma protuberans: comparison with CD68, CD34, and Factor XIIIa. Sachdev, R., Sundram, U. J. Cutan. Pathol. (2006) [Pubmed]
  14. Enkephalin-like immunoreactivity in human skin is found selectively in a fraction of CD68-positive dermal cells: increase in enkephalin-positive cells in lesional psoriasis. Nissen, J.B., Lund, M., Stengaard-Pedersen, K., Kragballe, K. Arch. Dermatol. Res. (1997) [Pubmed]
  15. Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Chapple, K.S., Cartwright, E.J., Hawcroft, G., Tisbury, A., Bonifer, C., Scott, N., Windsor, A.C., Guillou, P.J., Markham, A.F., Coletta, P.L., Hull, M.A. Am. J. Pathol. (2000) [Pubmed]
  16. Thymidine phosphorylase expression in normal, hyperplastic and neoplastic prostates: correlation with tumour associated macrophages, infiltrating lymphocytes, and angiogenesis. Sivridis, E., Giatromanolaki, A., Papadopoulos, I., Gatter, K.C., Harris, A.L., Koukourakis, M.I. Br. J. Cancer (2002) [Pubmed]
  17. Lysozyme-rich muciphages surrounding colorectal adenomas. Rubio, C.A. Anticancer Res. (2002) [Pubmed]
  18. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Charbord, P., Tavian, M., Humeau, L., Péault, B. Blood (1996) [Pubmed]
  19. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Holness, C.L., Simmons, D.L. Blood (1993) [Pubmed]
  20. Activation of peripheral blood CD14+ monocytes occurs in diabetes. Cipolletta, C., Ryan, K.E., Hanna, E.V., Trimble, E.R. Diabetes (2005) [Pubmed]
  21. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. Bruun, J.M., Lihn, A.S., Pedersen, S.B., Richelsen, B. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  22. Costimulatory molecules in the developing human gastrointestinal tract: a pathway for fetal allergen priming. Jones, C.A., Vance, G.H., Power, L.L., Pender, S.L., Macdonald, T.T., Warner, J.O. J. Allergy Clin. Immunol. (2001) [Pubmed]
  23. Distinctive features of "nurselike" cells that differentiate in the context of chronic lymphocytic leukemia. Tsukada, N., Burger, J.A., Zvaifler, N.J., Kipps, T.J. Blood (2002) [Pubmed]
  24. Presence of estrogen-binding sites on macrophage-like synoviocytes and CD8+, CD29+, CD45RO+ T lymphocytes in normal and rheumatoid synovium. Cutolo, M., Accardo, S., Villaggio, B., Clerico, P., Bagnasco, M., Coviello, D.A., Carruba, G., lo Casto, M., Castagnetta, L. Arthritis Rheum. (1993) [Pubmed]
  25. Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. Matasić, R., Dietz, A.B., Vuk-Pavlović, S. J. Leukoc. Biol. (1999) [Pubmed]
  26. Paraffin section immunophenotype of cutaneous and extracutaneous mast cell disease: comparison to other hematopoietic neoplasms. Yang, F., Tran, T.A., Carlson, J.A., Hsi, E.D., Ross, C.W., Arber, D.A. Am. J. Surg. Pathol. (2000) [Pubmed]
  27. Giant cells in arthritic synovium. Wilkinson, L.S., Pitsillides, A.A., Edwards, J.C. Ann. Rheum. Dis. (1993) [Pubmed]
  28. Immunohistological characteristics of T cell infiltrates in different forms of childhood onset chronic arthritis. Murray, K.J., Luyrink, L., Grom, A.A., Passo, M.H., Emery, H., Witte, D., Glass, D.N. J. Rheumatol. (1996) [Pubmed]
  29. The effect of mifepristone administration on leukocyte populations, matrix metalloproteinases and inflammatory mediators in the first trimester cervix. Denison, F.C., Riley, S.C., Elliott, C.L., Kelly, R.W., Calder, A.A., Critchley, H.O. Mol. Hum. Reprod. (2000) [Pubmed]
  30. Reciprocal effects of C/EBPalpha and PKCdelta on JunB expression and monocytic differentiation depend upon the C/EBPalpha basic region. Liu, H., Keefer, J.R., Wang, Q.F., Friedman, A.D. Blood (2003) [Pubmed]
  31. Human choroid plexus is an uniquely involved area of the brain in amyloidosis: a histochemical, immunohistochemical and ultrastructural study. Sasaki, A., Iijima, M., Yokoo, H., Shoji, M., Nakazato, Y. Brain Res. (1997) [Pubmed]
  32. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Rajamannan, N.M., Nealis, T.B., Subramaniam, M., Pandya, S., Stock, S.R., Ignatiev, C.I., Sebo, T.J., Rosengart, T.K., Edwards, W.D., McCarthy, P.M., Bonow, R.O., Spelsberg, T.C. Circulation (2005) [Pubmed]
  33. Localization and regulation of pregnancy-associated plasma protein a expression in healing human skin. Chen, B.K., Leiferman, K.M., Pittelkow, M.R., Overgaard, M.T., Oxvig, C., Conover, C.A. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  34. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. Zhu, X., Meng, G., Dickinson, B.L., Li, X., Mizoguchi, E., Miao, L., Wang, Y., Robert, C., Wu, B., Smith, P.D., Lencer, W.I., Blumberg, R.S. J. Immunol. (2001) [Pubmed]
  35. Potential role for monocyte chemotactic protein-4 (MCP-4) in monocyte/macrophage recruitment in acute renal inflammation. Chakravorty, S.J., Howie, A.J., Girdlestone, J., Gentle, D., Savage, C.O. J. Pathol. (2001) [Pubmed]
  36. Expression and localisation of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis. van Lent, P.L., Span, P.N., Sloetjes, A.W., Radstake, T.R., van Lieshout, A.W., Heuvel, J.J., Sweep, C.G., van den Berg, W.B. Ann. Rheum. Dis. (2005) [Pubmed]
  37. Endothelial cells are the major source of sICAM-1 in rheumatoid synovial tissue. Krenn, V., Schedel, J., Döring, A., Huppertz, H.I., Gohlke, F., Tony, H.P., Vollmers, H.P., Müller-Hermelink, H.K. Rheumatol. Int. (1997) [Pubmed]
  38. Macrophages infiltrating the tissue in chronic pancreatitis express the chemokine receptor CCR5. Goecke, H., Forssmann, U., Uguccioni, M., Friess, H., Conejo-Garcia, J.R., Zimmermann, A., Baggiolini, M., Büchler, M.W. Surgery (2000) [Pubmed]
  39. Cell-type-specific expression of p53 and p21 in giant cell arteritis. Nordborg, C., Aman, P., Persson, M., Nordborg, E. APMIS (2005) [Pubmed]
  40. Granulomonocyte-associated lysosomal protein expression during in vitro expansion and differentiation of CD34+ hematopoietic progenitor cells. Scheinecker, C., Strobl, H., Fritsch, G., Csmarits, B., Krieger, O., Majdic, O., Knapp, W. Blood (1995) [Pubmed]
  41. Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Peudenier, S., Hery, C., Montagnier, L., Tardieu, M. Ann. Neurol. (1991) [Pubmed]
  42. Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint. Marinova-Mutafchieva, L., Taylor, P., Funa, K., Maini, R.N., Zvaifler, N.J. Arthritis Rheum. (2000) [Pubmed]
  43. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Love, S., Barber, R., Wilcock, G.K. Brain (1999) [Pubmed]
  44. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. Balasubramanian, K., Schroit, A.J. J. Biol. Chem. (1998) [Pubmed]
  45. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Wagner, S., Czub, S., Greif, M., Vince, G.H., Süss, N., Kerkau, S., Rieckmann, P., Roggendorf, W., Roosen, K., Tonn, J.C. Int. J. Cancer (1999) [Pubmed]
  46. HIV infection of placental macrophages: their potential role in vertical transmission. Kesson, A.M., Fear, W.R., Williams, L., Chang, J., King, N.J., Cunningham, A.L. J. Leukoc. Biol. (1994) [Pubmed]
  47. A comparative quantitative morphometric study of cell apoptosis in synovial membranes in psoriatic, reactive and rheumatoid arthritis. Ceponis, A., Hietanen, J., Tamulaitiene, M., Partsch, G., Pätiälä, H., Konttinen, Y.T. Rheumatology (Oxford, England) (1999) [Pubmed]
WikiGenes - Universities