The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels.

Liver X receptors (LXRalpha and LXRbeta) regulate glucose and lipid metabolism. Pancreatic beta-cells and INS-1E insulinoma cells express only the LXRbeta isoform. Activation of LXRbeta with the synthetic agonist T0901317 increased glucose-induced insulin secretion and insulin content, whereas deletion of the receptor in LXRbeta knockout mice severely blunted insulin secretion. Analysis of gene expression in LXR agonist-treated INS-1E cells and islets from LXRbeta-deficient mice revealed that LXRbeta positively regulated expression of ATP-binding cassette transporter A1 (ABCA1), sterol regulatory element-binding protein 1 (SREBP-1), insulin, PDX-1, glucokinase, and glucose transporter 2 (Glut2). Down-regulation of SREBP-1 expression with the specific small interfering RNA blocked basal and LXRbeta-induced expression of pancreatic duodenal homeobox 1 (PDX-1), insulin, and Glut2 genes. SREBP-1 small interfering RNA also prevented an increase in insulin secretion and insulin content induced by T0901317. Moreover, 5-(tetradecyloxy)-2-furoic acid, an inhibitor of the SREBP-1 target gene acetyl-coenzyme A carboxylase, blocked T0901317-induced stimulation of insulin secretion. In conclusion, activation of LXRbeta in pancreatic beta-cells increases insulin secretion and insulin mRNA expression via SREBP-1-regulated pathway. These data support the role of LXRbeta, SREBP-1, and cataplerosis/anaplerosis pathways in the control of insulin secretion in pancreatic beta-cells.[1]

References

  1. Sterol regulatory element-binding protein 1 mediates liver X receptor-beta-induced increases in insulin secretion and insulin messenger ribonucleic acid levels. Zitzer, H., Wente, W., Brenner, M.B., Sewing, S., Buschard, K., Gromada, J., Efanov, A.M. Endocrinology (2006) [Pubmed]
 
WikiGenes - Universities