The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Development of BCG as a live recombinant vector system: potential use as an HIV vaccine.

Bacille Calmette-Guèrin (BCG), a live attenuated tubercle bacillus, is currently the most widely used vaccine in the world. Because of its unique characteristics, including low toxicity, adjuvant potential, and long-lasting immunity, BCG represents a novel vaccine vehicle with which to deliver protective antigens of multiple pathogens. We have developed episomal and integrative expression vectors employing regulatory sequences of major BCG heat shock proteins for stable maintenance and expression of foreign antigens in BCG vaccine strains (22). Shuttle plasmids capable of autonomous replication in Escherichia coli and BCG were constructed with a DNA cassette containing a minimal replicon derived from the Mycobacterium fortuitum plasmid pAL5000. Efficient and stable chromosomal integration of recombinant plasmids into BCG was achieved using a DNA segment containing the mycobacteriophage L5 attachment site and integrase coding sequence. Using the BCG hsp60 and hsp70 stress gene promoters, we were able to express Escherchia coli beta-galactosidase to levels in excess of 10% of total cell protein. The major antigens of HIV-1 gag, pol, and env were also stably expressed using our vector systems. The recombinant BCG elicited long-lasting humoral and cellular immune responses to these antigens in mice. Antibody responses to beta-galactosidase using as few as 200 colony-forming units were detected 6 weeks after immunization, and titers (1:30,000) were sustained for more than 10 weeks. Cellular immune responses, of both cytotoxic T cell (CTL) and helper T lymphocytes, were detected to beta-galactosidase. CTL responses were also induced to the HIV-1 envelope protein. Thus, we have demonstrated stable recombinant antigen expression, processing, and presentation using our recombinant BCG vector system. This live recombinant vector system shows promise as a universally applicable and safe vaccine vehicle for protection against various infectious diseases.[1]

References

  1. Development of BCG as a live recombinant vector system: potential use as an HIV vaccine. Fuerst, T.R., Stover, C.K., de la Cruz, V.F. Biotechnology therapeutics. (1991) [Pubmed]
 
WikiGenes - Universities