The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Hspd1  -  heat shock protein 1 (chaperonin)

Mus musculus

Synonyms: 60 kDa chaperonin, 60 kDa heat shock protein, mitochondrial, 60kDa, CPN60, Chaperonin 60, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hspd1

  • We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6 [1].
  • The immunopathologic sequelae of chlamydial infection are correlated with immune responses to the Chlamydia trachomatis heat shock protein 60 (hsp60) [2].
  • A mycobacterial HSP65 DNA vaccine was previously shown to have prophylactic and immunotherapeutic effects against Mycobacterium tuberculosis infection in mice [3].
  • In this study, the modulatory effect of interleukin (IL)-2, IL-4, and interferon (IFN)-gamma coexpressed with the 60-kDa heat shock protein (Hsp60) of Yersinia enterocolitica O:8 (Y-Hsp60) was studied [4].
  • These findings indicate that encapsulated MHSP/TDM is more immunogenic than naked hsp65 DNA, and has great potential to improve vaccine effectiveness against leishmaniasis and tuberculosis [3].
 

Psychiatry related information on Hspd1

 

High impact information on Hspd1

  • Immunity to hsp65 can cause autoimmune diabetes in mice and may be related to autoimmune arthritis in rats and humans, so immunity to hsp65 should be forbidden; yet healthy persons manifest T-cell responses to self-hsp65 [6].
  • Microbial and mammalian hsp65 molecules are 50% identical in amino acid sequence and immunologically cross-reactive, so microbial hsp65 looks like self; yet hsp65 is a dominant antigen in infection [6].
  • The immunology of the 65 kd heat shock protein (hsp65) is paradoxical [6].
  • S. typhimurium-stimulated cytotoxic T lymphocytes recognizing the GroEL epitope cross-reacted with a peptide derived from mouse heat shock protein 60 and recognized stressed macrophages [7].
  • When mice were injected with plasmid DNA encoding a single mycobacterial antigen (65-kDa heat shock protein, hsp65) they made specific cellular and humoral responses to the protein and became immune to subsequent challenge with Mycobacterium tuberculosis [8].
 

Chemical compound and disease context of Hspd1

 

Biological context of Hspd1

  • Our results extend the role of specific hsp60 immunomodulation in the control of beta cell autoimmunity and demonstrate that immunoregulatory networks activated by specific phsp60 vaccination can spread to other Ags targeted during the progression of diabetes, like insulin and GAD [14].
  • Heat shock protein 10 (Hsp10) and heat shock protein 60 (Hsp60) were originally described as essential mitochondrial proteins involved in protein folding [15].
  • One pathogenic mechanism that may explain this association is the induction of autoimmune responses to self hsp60, since these two proteins share a high degree of amino acid sequence identity [2].
  • In contrast, "effector" T cells, undergoing secondary stimulation, displayed almost unchanged activation kinetics in the presence of Hsp60 [16].
  • The presence of Hsp60 induces IFN-gamma and up-regulation of CD69 in T cell/PEC cocultures even in the absence of antigenic peptide and this induction of IFN-gamma is strictly dependent on the ability of the macrophages to produce IL-12 [16].
 

Anatomical context of Hspd1

  • These results provide a molecular explanation for the effects of HSP60 treatment on T cell inflammation via innate regulation of the inflammatory response [17].
  • Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway [1].
  • Human heat shock protein 60 (hsp60) elicits a potent proinflammatory response in cells of the innate immune system and therefore has been proposed as a danger signal of stressed or damaged cells [18].
  • Depletion of both subpopulations after Hsp60 vaccination resulted in a failure to control a lethal infection and a higher fungal burden in lungs and spleens [19].
  • In testicular sections, both HSPD1 and TRA1 were closely associated with the mitochondria of spermatogonia and primary spermatocytes [20].
 

Associations of Hspd1 with chemical compounds

 

Physical interactions of Hspd1

 

Regulatory relationships of Hspd1

  • Yet, HSP60 can also down-regulate experimental immune arthritis and diabetes models by specific inhibition of Th1-like responses [17].
  • Genes encoding IL-2 were inserted into an Escherichia coli-BCG shuttle plasmid under the control of the BCG HSP60 promoter [26].
  • In time, increasing levels of hsp60-induced IL-10 could be detected in NOD mice, but not in age- and MHC class II-matched BiozziABH mice, which lack any sign of pancreatic inflammation [27].
  • Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens [28].
  • On the other hand, while production of IL-12 was observed in mice immunized with pACB/hsp65 12 weeks before, the cytokine production was inhibited by in vitro secondary stimulation with M. leprae or hsp65 [29].
 

Other interactions of Hspd1

 

Analytical, diagnostic and therapeutic context of Hspd1

References

  1. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. Cohen-Sfady, M., Nussbaum, G., Pevsner-Fischer, M., Mor, F., Carmi, P., Zanin-Zhorov, A., Lider, O., Cohen, I.R. J. Immunol. (2005) [Pubmed]
  2. Autoimmunity to heat shock protein 60 and antigen-specific production of interleukin-10. Yi, Y., Yang, X., Brunham, R.C. Infect. Immun. (1997) [Pubmed]
  3. Mycobacterium hsp65 DNA entrapped into TDM-loaded PLGA microspheres induces protection in mice against Leishmania (Leishmania) major infection. Coelho, E.A., Tavares, C.A., de Melo Lima, K., Silva, C.L., Rodrigues, J.M., Fernandes, A.P. Parasitol. Res. (2006) [Pubmed]
  4. DNA vaccination using coexpression of cytokine genes with a bacterial gene encoding a 60-kDa heat shock protein. Hornef, M.W., Noll, A., Schirmbeck, R., Reimann, J., Autenrieth, I.B. Med. Microbiol. Immunol. (Berl.) (2000) [Pubmed]
  5. Bacterial and host factors involved in the major histocompatibility complex class Ib-restricted presentation of Salmonella Hsp 60: novel pathway. Lo, W.F., Dunn, C.D., Ong, H., Metcalf, E.S., Soloski, M.J. Infect. Immun. (2004) [Pubmed]
  6. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Cohen, I.R. Annu. Rev. Immunol. (1991) [Pubmed]
  7. Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Lo, W.F., Woods, A.S., DeCloux, A., Cotter, R.J., Metcalf, E.S., Soloski, M.J. Nat. Med. (2000) [Pubmed]
  8. Vaccination against tuberculosis by DNA injection. Tascon, R.E., Colston, M.J., Ragno, S., Stavropoulos, E., Gregory, D., Lowrie, D.B. Nat. Med. (1996) [Pubmed]
  9. Co-expression of interleukin-2 and green fluorescent protein reporter in mycobacteria: in vivo application for monitoring antimycobacterial immunity. Luo, Y., Chen, X., Szilvasi, A., O'Donnell, M.A. Mol. Immunol. (2000) [Pubmed]
  10. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Kol, A., Sukhova, G.K., Lichtman, A.H., Libby, P. Circulation (1998) [Pubmed]
  11. The hsp60 peptide p277 arrests the autoimmune diabetes induced by the toxin streptozotocin. Elias, D., Cohen, I.R. Diabetes (1996) [Pubmed]
  12. Self and foreign 60-kilodalton heat shock protein T cell epitope peptides serve as immunogenic carriers for a T cell-independent sugar antigen. Könen-Waisman, S., Fridkin, M., Cohen, I.R. J. Immunol. (1995) [Pubmed]
  13. Heat shock protein 60 autoimmunity and early lipid lesions in cholesterol-fed C57BL/6JBom mice during Chlamydia pneumoniae infection. Erkkilä, L., Laitinen, K., Haasio, K., Tiirola, T., Jauhiainen, M., Lehr, H.A., Aalto-Setälä, K., Saikku, P., Leinonen, M. Atherosclerosis (2004) [Pubmed]
  14. DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. Quintana, F.J., Carmi, P., Cohen, I.R. J. Immunol. (2002) [Pubmed]
  15. Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. Johnson, B.J., Le, T.T., Dobbin, C.A., Banovic, T., Howard, C.B., Flores, F.d.e. .M., Vanags, D., Naylor, D.J., Hill, G.R., Suhrbier, A. J. Biol. Chem. (2005) [Pubmed]
  16. Heat shock proteins as "danger signals": eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Breloer, M., Dorner, B., Moré, S.H., Roderian, T., Fleischer, B., von Bonin, A. Eur. J. Immunol. (2001) [Pubmed]
  17. Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. Zanin-Zhorov, A., Bruck, R., Tal, G., Oren, S., Aeed, H., Hershkoviz, R., Cohen, I.R., Lider, O. J. Immunol. (2005) [Pubmed]
  18. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. Ohashi, K., Burkart, V., Flohé, S., Kolb, H. J. Immunol. (2000) [Pubmed]
  19. Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum. Deepe, G.S., Gibbons, R.S. Infect. Immun. (2002) [Pubmed]
  20. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Asquith, K.L., Harman, A.J., McLaughlin, E.A., Nixon, B., Aitken, R.J. Biol. Reprod. (2005) [Pubmed]
  21. Lipopolysaccharide-free heat shock protein 60 activates T cells. Osterloh, A., Meier-Stiegen, F., Veit, A., Fleischer, B., von Bonin, A., Breloer, M. J. Biol. Chem. (2004) [Pubmed]
  22. Beta 2-microglobulin independent presentation of exogenously added foreign peptide and endogenous self-epitope by MHC class I alpha-chain to a cross-reactive CD8+ CTL clone. Zügel, U., Schoel, B., Kaufmann, S.H. J. Immunol. (1994) [Pubmed]
  23. A heterologous DNA priming-Mycobacterium bovis BCG boosting immunization strategy using mycobacterial Hsp70, Hsp65, and Apa antigens improves protection against tuberculosis in mice. Ferraz, J.C., Stavropoulos, E., Yang, M., Coade, S., Espitia, C., Lowrie, D.B., Colston, M.J., Tascon, R.E. Infect. Immun. (2004) [Pubmed]
  24. Crossrecognition by CD8 T cell receptor alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Zügel, U., Schoel, B., Yamamoto, S., Hengel, H., Morein, B., Kaufmann, S.H. Eur. J. Immunol. (1995) [Pubmed]
  25. Synaptophysin-containing microvesicles transport heat-shock protein hsp60 in insulin-secreting beta cells. Brudzynski, K., Martinez, V. Cytotechnology. (1993) [Pubmed]
  26. Recombinant Mycobacterium bovis BCG secreting functional interleukin-2 enhances gamma interferon production by splenocytes. O'Donnell, M.A., Aldovini, A., Duda, R.B., Yang, H., Szilvasi, A., Young, R.A., DeWolf, W.C. Infect. Immun. (1994) [Pubmed]
  27. T cell reactivity to heat shock protein 60 in diabetes-susceptible and genetically protected nonobese diabetic mice is associated with a protective cytokine profile. van Halteren, A.G., Mosselman, B., Roep, B.O., van Eden, W., Cooke, A., Kraal, G., Wauben, M.H. J. Immunol. (2000) [Pubmed]
  28. Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Elias, D., Meilin, A., Ablamunits, V., Birk, O.S., Carmi, P., Könen-Waisman, S., Cohen, I.R. Diabetes (1997) [Pubmed]
  29. Effect of hsp65 DNA vaccination carrying immunostimulatory DNA sequences (CpG motifs) against Mycobacterium leprae multiplication in mice. Nomaguchi, H., Mukai, T., Takeshita, F., Matsuoka, M., Maeda, Y., Aye, T.M., Jahan, N., Yogi, Y., Endo, M., Sato, Y. Int. J. Lepr. Other Mycobact. Dis. (2002) [Pubmed]
  30. Messenger RNA expression of heat shock proteins (HSPs) during ocular development. Tanaka, Y., Kobayashi, K., Kita, M., Kinoshita, S., Imanishi, J. Curr. Eye Res. (1995) [Pubmed]
  31. Toll-like receptor 4 is involved in outward arterial remodeling. Hollestelle, S.C., De Vries, M.R., Van Keulen, J.K., Schoneveld, A.H., Vink, A., Strijder, C.F., Van Middelaar, B.J., Pasterkamp, G., Quax, P.H., De Kleijn, D.P. Circulation (2004) [Pubmed]
  32. Plasmodium yoelii: cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Sanchez, G.I., Carucci, D.J., Sacci, J., Resau, J.H., Rogers, W.O., Kumar, N., Hoffman, S.L. Exp. Parasitol. (1999) [Pubmed]
  33. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. Habich, C., Baumgart, K., Kolb, H., Burkart, V. J. Immunol. (2002) [Pubmed]
  34. Immunocytochemical localization of heat-shock protein 60-related protein in beta-cell secretory granules and its altered distribution in non-obese diabetic mice. Brudzynski, K., Martinez, V., Gupta, R.S. Diabetologia (1992) [Pubmed]
  35. Expression of mammalian 60-kD heat shock protein in the joints of mice with pristane-induced arthritis. Barker, R.N., Wells, A.D., Ghoraishian, M., Easterfield, A.J., Hitsumoto, Y., Elson, C.J., Thompson, S.J. Clin. Exp. Immunol. (1996) [Pubmed]
 
WikiGenes - Universities