The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol.

2,5-Anhydro-D-mannitol (100 to 200 mg/kg) decreased blood glucose by 17 to 58% in fasting mice, rats, streptozotocin-diabetic mice, and genetically diabetic db/db mice. Serum lactate in rats was elevated 56% by 2,5-anhydro-D-mannitol, but this could be prevented by dichloroacetate (200 mg/kg) or thiamin (200 mg/kg). In hepatocytes from fasted rats, 1 mM 2,5-anhydro-D-mannitol inhibited gluconeogenesis from a mixture of alanine, lactate, and pyruvate. It also inhibited glucose production and stimulated lactate formation from glycerol or dihydroxyacetone. Glycogenolysis in hepatocytes from fed rats was markedly inhibited by 1 mM 2,5-anhydro-D-mannitol both in the presence or absence of 1 microM glucagon. 2,5-Anhydro-D-mannitol can be phosphorylated by fructokinase or hexokinase to the 1-phosphate and then by phosphofructokinase to the 1,6-bisphosphate. Rat liver glycogen phosphorylase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 0.66 +/- 0.09 mM) but was little affected by 2,5-anhydro-D-mannitol 1,6-bisphosphate. Rat liver phosphoglucomutase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 2.8 +/- 0.2 mM), whereas 2,5-anhydro-D-mannitol 1,6-bisphosphate served as an alternative activator (apparent K alpha = 7.0 +/- 0.5 microM). Rabbit liver pyruvate kinase was activated by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent K alpha = 9.5 +/- 0.9 microM), whereas rabbit liver fructose 1,6-bisphosphatase was inhibited by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent Ki = 3.6 +/- 0.3 microM). The phosphate esters of 2,5-anhydro-D-mannitol would, therefore, be expected to inhibit glycogenolysis and gluconeogenesis and stimulate glycolysis in liver.[1]


  1. Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol. Hanson, R.L., Ho, R.S., Wiseberg, J.J., Simpson, R., Younathan, E.S., Blair, J.B. J. Biol. Chem. (1984) [Pubmed]
WikiGenes - Universities