The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Hk1  -  hexokinase 1

Mus musculus

Synonyms: BB404130, HK I, Hexokinase type I, Hexokinase, tumor isozyme, Hexokinase-1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hk1


High impact information on Hk1


Chemical compound and disease context of Hk1


Biological context of Hk1


Anatomical context of Hk1

  • However, they lack the porin-binding domain (PBD) present in this region of Hk1, used for binding to a pore-forming protein in the outer mitochondrial membrane [13].
  • The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria [15].
  • Overexpression of hexokinase alone in skeletal muscle had no effect on glucose transport or metabolism in isolated muscles, nor did it alter blood glucose levels or the rate of whole-body glucose disposal [2].
  • A novel NH(2)-terminal, nonhydrophobic motif targets a male germ cell-specific hexokinase to the endoplasmic reticulum and plasma membrane [16].
  • Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa [15].

Associations of Hk1 with chemical compounds


Physical interactions of Hk1


Other interactions of Hk1

  • Loss of mitochondrial hexokinase activity was correlated to the induction of apoptosis in WEHI7.2 and CAT38 cells [22].
  • Indeed, in hGK-KO hepatocytes overexpressing SREBP-1c, the effect of glucose on glycolytic and lipogenic genes is lost because of the impaired ability of these hepatocytes to efficiently metabolize glucose, despite a marked increase in low K(m) hexokinase activity [23].
  • Surprisingly, even though HKII(+/-) mice had significantly reduced (by 50%) hexokinase II mRNA and activity levels in skeletal muscle, heart, and adipose tissue, they did not exhibit impaired insulin action or glucose tolerance even when challenged with a high-fat diet [24].
  • The same values of flux control coefficients for hexokinase and for phosphofructokinase (0.8 and 0.2 respectively) were found in absence and in presence of copper [25].
  • Mesangial cell hexokinase (HK) activity is increased by a diverse array of factors that share both an association with pathological conditions and a common requirement for classic MAPK pathway activation [26].

Analytical, diagnostic and therapeutic context of Hk1


  1. Glucose phosphorylation in tumor cells. Cloning, sequencing, and overexpression in active form of a full-length cDNA encoding a mitochondrial bindable form of hexokinase. Arora, K.K., Fanciulli, M., Pedersen, P.L. J. Biol. Chem. (1990) [Pubmed]
  2. Transgenic overexpression of hexokinase II in skeletal muscle does not increase glucose disposal in wild-type or Glut1-overexpressing mice. Hansen, P.A., Marshall, B.A., Chen, M., Holloszy, J.O., Mueckler, M. J. Biol. Chem. (2000) [Pubmed]
  3. Effect of primary congenital hypothyroidism upon expression of genes mediating murine brain glucose uptake. Khan, J.Y., Rajakumar, R.A., Devaskar, U.P., Weissfeld, L.A., Devaskar, S.U. Pediatr. Res. (1999) [Pubmed]
  4. Downeast anemia (dea), a new mouse model of severe nonspherocytic hemolytic anemia caused by hexokinase (HK(1)) deficiency. Peters, L.L., Lane, P.W., Andersen, S.G., Gwynn, B., Barker, J.E., Beutler, E. Blood Cells Mol. Dis. (2001) [Pubmed]
  5. Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment. Miccoli, L., Poirson-Bichat, F., Sureau, F., Bras Gonçalves, R., Bourgeois, Y., Dutrillaux, B., Poupon, M.F., Oudard, S. J. Natl. Cancer Inst. (1998) [Pubmed]
  6. 2-Deoxyglucose and cytochalasin D modulate aldolase mobility in living 3T3 cells. Pagliaro, L., Taylor, D.L. J. Cell Biol. (1992) [Pubmed]
  7. Expression of yeast hexokinase in pancreatic beta cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Epstein, P.N., Boschero, A.C., Atwater, I., Cai, X., Overbeek, P.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  8. Glucose catabolic gene mRNA levels in skeletal muscle exhibit non-coordinate expression in hyperglycemic mice. Kato, M., Suwa, A., Shimokawa, T. Horm. Metab. Res. (2004) [Pubmed]
  9. Lithium detaches hexokinase from mitochondria and inhibits proliferation of B16 melanoma cells. Penso, J., Beitner, R. Mol. Genet. Metab. (2003) [Pubmed]
  10. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Penso, J., Beitner, R. Eur. J. Pharmacol. (1998) [Pubmed]
  11. Enzyme activities of hepatic glucose utilization in the fed and fasting genetically obese mouse at 4-5 months of age. Hron, W.T., Sobocinski, K.A., Menahan, L.A. Horm. Metab. Res. (1984) [Pubmed]
  12. Interaction of cytotoxic antibiotic dactylarin with glycolytic thiol enzymes in Ehrlich ascites carcinoma cells. Sturdík, E., Drobnica, L. J. Antibiot. (1981) [Pubmed]
  13. Unique hexokinase messenger ribonucleic acids lacking the porin-binding domain are developmentally expressed in mouse spermatogenic cells. Mori, C., Welch, J.E., Fulcher, K.D., O'Brien, D.A., Eddy, E.M. Biol. Reprod. (1993) [Pubmed]
  14. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Rathmell, J.C., Fox, C.J., Plas, D.R., Hammerman, P.S., Cinalli, R.M., Thompson, C.B. Mol. Cell. Biol. (2003) [Pubmed]
  15. Targeting of a germ cell-specific type 1 hexokinase lacking a porin-binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. Travis, A.J., Foster, J.A., Rosenbaum, N.A., Visconti, P.E., Gerton, G.L., Kopf, G.S., Moss, S.B. Mol. Biol. Cell (1998) [Pubmed]
  16. A novel NH(2)-terminal, nonhydrophobic motif targets a male germ cell-specific hexokinase to the endoplasmic reticulum and plasma membrane. Travis, A.J., Sui, D., Riedel, K.D., Hofmann, N.R., Moss, S.B., Wilson, J.E., Kopf, G.S. J. Biol. Chem. (1999) [Pubmed]
  17. Glucose uptake and lactate production in cells exposed to CoCl(2) and in cells overexpressing the Glut-1 glucose transporter. Hwang, D.Y., Ismail-Beigi, F. Arch. Biochem. Biophys. (2002) [Pubmed]
  18. Hexokinase activity in mouse embryos developed in vivo and in vitro. Ayabe, T., Tsutsumi, O., Taketani, Y. Hum. Reprod. (1994) [Pubmed]
  19. Developmental regulation of genes mediating murine brain glucose uptake. Khan, J.Y., Rajakumar, R.A., McKnight, R.A., Devaskar, U.P., Devaskar, S.U. Am. J. Physiol. (1999) [Pubmed]
  20. Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism. Kim, Y.B., Peroni, O.D., Aschenbach, W.G., Minokoshi, Y., Kotani, K., Zisman, A., Kahn, C.R., Goodyear, L.J., Kahn, B.B. Mol. Cell. Biol. (2005) [Pubmed]
  21. Mitochondrial contact sites. Lipid composition and dynamics. Ardail, D., Privat, J.P., Egret-Charlier, M., Levrat, C., Lerme, F., Louisot, P. J. Biol. Chem. (1990) [Pubmed]
  22. Overexpression of catalase or Bcl-2 alters glucose and energy metabolism concomitant with dexamethasone resistance. Tome, M.E., Lutz, N.W., Briehl, M.M. Biochim. Biophys. Acta (2004) [Pubmed]
  23. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. Dentin, R., Pégorier, J.P., Benhamed, F., Foufelle, F., Ferré, P., Fauveau, V., Magnuson, M.A., Girard, J., Postic, C. J. Biol. Chem. (2004) [Pubmed]
  24. Hexokinase II-deficient mice. Prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. Heikkinen, S., Pietilä, M., Halmekytö, M., Suppola, S., Pirinen, E., Deeb, S.S., Jänne, J., Laakso, M. J. Biol. Chem. (1999) [Pubmed]
  25. Application of metabolic control analysis to the study of toxic effects of copper in muscle glycolysis. Jannaschk, D., Burgos, M., Centerlles, J.J., Ovadi, J., Cascante, M. FEBS Lett. (1999) [Pubmed]
  26. Proinflammatory interleukin-1 cytokines increase mesangial cell hexokinase activity and hexokinase II isoform abundance. Taneja, N., Coy, P.E., Lee, I., Bryson, J.M., Robey, R.B. Am. J. Physiol., Cell Physiol. (2004) [Pubmed]
  27. Mechanisms related to [18F]fluorodeoxyglucose uptake of human colon cancers transplanted in nude mice. Chung, J.K., Lee, Y.J., Kim, C., Choi, S.R., Kim, M., Lee, K., Jeong, J.M., Lee, D.S., Jang, J.J., Lee, M.C. J. Nucl. Med. (1999) [Pubmed]
  28. Expression and activity of hexokinase in the early mouse embryo. Houghton, F.D., Sheth, B., Moran, B., Leese, H.J., Fleming, T.P. Mol. Hum. Reprod. (1996) [Pubmed]
  29. Assignment of the genes coding for pyrophosphatase and hexokinase-1 to mouse chromosome 10: implications for comparative gene mapping in man and mouse. Lalley, P.A., Francke, U., Minna, J.D. Cytogenet. Cell Genet. (1978) [Pubmed]
  30. Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinase. Arora, K.K., Filburn, C.R., Pedersen, P.L. J. Biol. Chem. (1991) [Pubmed]
WikiGenes - Universities