Kainate receptor gene expression in the developing rat brain.
Kainate-preferring receptors are a subclass of ionotropic glutamate receptors that might play a role in brain development. The expression of the five known genes encoding kainate receptor subunits (GluR-5, -6, -7, KA-1, and KA-2) was studied by in situ hybridization during pre- and postnatal development of the rat brain. We compared the combined expression patterns of these genes with autoradiography using 3H-kainate in the developing brain from embryonic day 12 (E12) through to adult. Although mRNAs for the receptor subunits (except KA-1) can be detected at stage E12, 3H-kainic acid binding (as an index of receptor protein) is not found at this stage. However, by E14 high-affinity kainate sites are found throughout the gray matter, but particularly in spinal cord, primordial cerebellum, and ventral forebrain structures. All genes undergo a peak in their expression in the late embryonic/early postnatal period. GluR-5 expression during development shows the most interesting features because the changes are qualitative. The GluR-5 gene shows peaks of expression around the period of birth in the sensory cortex (layers II, III, and IV), in CA1 hippocampal interneurons in the stratum oriens, in the septum, and in the thalamus. GluR-6 shows a prenatal expression peak in the cingulate gyrus of the neocortex. KA-1 transcripts appear with the development of the hippocampus and remain largely confined to discrete areas such as the CA3 region, the dentate gyrus, and subiculum. KA-2 transcripts are found throughout the CNS from as early as E12 and remain constant until adulthood. The GluR-5 and GluR-6 genes are coexpressed in multiple peripheral ganglia (e.g., cranial nerve ganglia, dorsal root ganglia, and mural ganglia) at E14.[1]References
- Kainate receptor gene expression in the developing rat brain. Bahn, S., Volk, B., Wisden, W. J. Neurosci. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg