The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Grik1  -  glutamate receptor, ionotropic, kainate 1

Rattus norvegicus

Synonyms: GluK1, GluR-5, GluR5, Glur5, Glutamate receptor 5, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Grik1

  • This assumption is corroborated by the observation (Mackler and Eberwine, 1993) that GluR5 mRNA is completely unedited in neurons of the hippocampal CA1-subfield, a region most vulnerable to transient cerebral ischemia [1].
  • The ischemia-induced upregulation of GluR5 mRNA editing observed in the striatum may be indicative of a higher sensitivity to transient ischemia of neurons that exhibit a large fraction of unedited GluR5 mRNA [1].
  • In addition, 2S,4R-4MG fully desensitized native kainate receptors (of the GluR5 subtype) in dorsal root ganglion neurons with an IC50 of 11 nM, compared to 3.4 microM for glutamate [2].
  • Intra-amygdaloid injections of KA provide a model of temporal lobe epilepsy, and we show that following seizures, the extent of GluR5 and GluR6 editing is altered in the hippocampus [3].
  • In young rats in vivo, the GluR5 selective agonist ATPA was antinociceptive and antihyperalgesic in a model of inflammatory hyperalgesia (ED(50) approximately 4.6 and approximately 5.2 mg/kg, respectively), whereas the GluR5/GluR6 agonist SYM2081 was only antihyperalgesic [4].
 

Psychiatry related information on Grik1

  • RESULTS: AMPA, kainic acid and the GluR5 selective agonist ATPA, all suppressed spontaneous locomotor activity (SLA) in rats at doses of 1.0, 5.0 and 20 mg/kg resp. All three agonists achieve micromolar concentrations measured in whole brain after dosing with 10 mg/kg SC [5].
  • Earlier work has shown that systemic administration of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 (mGlu5) antagonist, is able to disrupt classical conditioning in CTA [6].
 

High impact information on Grik1

 

Chemical compound and disease context of Grik1

 

Biological context of Grik1

 

Anatomical context of Grik1

 

Associations of Grik1 with chemical compounds

  • The non-NMDA family of glutamate receptors comprises a growing number of structurally related subunits (GluR-A to -D or -1 to -4; GluR-5, -6; KA-1) [13].
  • The results show that the KA2-containing GnRH neurons also contain GluR5 receptor subunit mRNA and protein, and that these GnRH neurons are c-Fos positive during the steroid-induced LH surge [21].
  • The phosphono amino acid, (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propio nic acid (ATPO), is a structural hybrid between the NMDA antagonist (RS)-2-amino-7-phosphonoheptanoic acid (AP7) and the AMPA and GluR5 agonist, (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) [22].
  • The GluR5 protein forms homomeric ion channels in Xenopus oocytes that are weakly responsive to L-glutamate [16].
  • The GluR-5 gene shows peaks of expression around the period of birth in the sensory cortex (layers II, III, and IV), in CA1 hippocampal interneurons in the stratum oriens, in the septum, and in the thalamus [23].
 

Regulatory relationships of Grik1

 

Other interactions of Grik1

  • Our data suggest that the heteromeric GluR5/KA2 combination actually occurs in TG neurons and give a clue as to the subunit composition of native kainate receptor channels [18].
  • Lamina I contained occasional cells expressing the GluR-5 gene, whereas GluR-7 mRNA was present in scattered cells in all superficial laminae [26].
  • Postsynaptic densities of the giant mossy fiber-UBC synapses were GluR2/3, GluR5/6/7, and NR1 immunoreactive [27].
  • Within the mesolimbic pathway, reductions were observed in NR1 and GluR5 immunoreactivity in the VTA although no significant alterations were observed in any iGluR subunits in the NAc [28].
  • In contrast to recombinantly expressed GluR-A to -D channels, currents elicited at GluR-5 receptor desensitize channels to all agonists [13].
 

Analytical, diagnostic and therapeutic context of Grik1

References

  1. RNA editing of glutamate receptor subunits GluR2, GluR5 and GluR6 in transient cerebral ischemia in the rat. Paschen, W., Schmitt, J., Uto, A. J. Cereb. Blood Flow Metab. (1996) [Pubmed]
  2. Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Jones, K.A., Wilding, T.J., Huettner, J.E., Costa, A.M. Neuropharmacology (1997) [Pubmed]
  3. Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Bernard, A., Ferhat, L., Dessi, F., Charton, G., Represa, A., Ben-Ari, Y., Khrestchatisky, M. Eur. J. Neurosci. (1999) [Pubmed]
  4. Modulation of spinal nociception by GluR5 kainate receptor ligands in acute and hyperalgesic states and the role of gabaergic mechanisms. Mascias, P., Scheede, M., Bloms-Funke, P., Chizh, B. Neuropharmacology (2002) [Pubmed]
  5. Locomotor activity detects subunit-selective effects of agonists and decahydroisoquinoline antagonists at AMPA/kainic acid ionotropic glutamate receptors in adult rats. O'neill, M.F., Sanger, G., Ornstein, P.L., Osborne, D.J., Woodhouse, S.M. Psychopharmacology (Berl.) (2005) [Pubmed]
  6. Effects of metabotropic glutamate receptor 5 on latent inhibition in conditioned taste aversion. Bills, C., Schachtman, T.R., Serfozo, P., Spooren, W.P., Gasparini, F., Simonyi, A. Behav. Brain Res. (2005) [Pubmed]
  7. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., Heinemann, S. Nature (1991) [Pubmed]
  8. Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Li, H., Chen, A., Xing, G., Wei, M.L., Rogawski, M.A. Nat. Neurosci. (2001) [Pubmed]
  9. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Cossart, R., Esclapez, M., Hirsch, J.C., Bernard, C., Ben-Ari, Y. Nat. Neurosci. (1998) [Pubmed]
  10. Expression of metabotropic glutamate receptor 5 is increased in astrocytes after kainate-induced epileptic seizures. Ulas, J., Satou, T., Ivins, K.J., Kesslak, J.P., Cotman, C.W., Balázs, R. Glia (2000) [Pubmed]
  11. Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Oueslati, A., Breysse, N., Amalric, M., Kerkerian-Le Goff, L., Salin, P. Eur. J. Neurosci. (2005) [Pubmed]
  12. Induction mechanisms for L-LTP at thalamic input synapses to the lateral amygdala: requirement of mGluR5 activation. Lee, O., Lee, C.J., Choi, S. Neuroreport (2002) [Pubmed]
  13. A glutamate receptor channel with high affinity for domoate and kainate. Sommer, B., Burnashev, N., Verdoorn, T.A., Keinänen, K., Sakmann, B., Seeburg, P.H. EMBO J. (1992) [Pubmed]
  14. Time-dependent effect of kainate-induced seizures on glutamate receptor GluR5, GluR6, and GluR7 mRNA and Protein Expression in rat hippocampus. Ullal, G., Fahnestock, M., Racine, R. Epilepsia (2005) [Pubmed]
  15. Male and female germline specific expression of an EGFP reporter gene in a unique strain of transgenic rats. Cronkhite, J.T., Norlander, C., Furth, J.K., Levan, G., Garbers, D.L., Hammer, R.E. Dev. Biol. (2005) [Pubmed]
  16. Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfield, A., Deneris, E.S., Moll, C., Borgmeyer, U., Hollmann, M., Heinemann, S. Neuron (1990) [Pubmed]
  17. A complex mosaic of high-affinity kainate receptors in rat brain. Wisden, W., Seeburg, P.H. J. Neurosci. (1993) [Pubmed]
  18. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. Sahara, Y., Noro, N., Iida, Y., Soma, K., Nakamura, Y. J. Neurosci. (1997) [Pubmed]
  19. Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex. Brose, N., Huntley, G.W., Stern-Bach, Y., Sharma, G., Morrison, J.H., Heinemann, S.F. J. Biol. Chem. (1994) [Pubmed]
  20. Correlation of the expression of kainate receptor subtypes to responses evoked in cultured cortical and spinal cord neurones. Dai, W.M., Christensen, K.V., Egebjerg, J., Ebert, B., Lambert, J.D. Brain Res. (2002) [Pubmed]
  21. Kainate receptor subunit-positive gonadotropin-releasing hormone neurons express c-Fos during the steroid-induced luteinizing hormone surge in the female rat. Eyigor, O., Jennes, L. Endocrinology (2000) [Pubmed]
  22. Resolution, absolute stereochemistry, and enantiopharmacology of the GluR1-4 and GluR5 antagonist 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid. Møller, E.H., Egebjerg, J., Brehm, L., Stensbøl, T.B., Johansen, T.N., Madsen, U., Krogsgaard-Larsen, P. Chirality. (1999) [Pubmed]
  23. Kainate receptor gene expression in the developing rat brain. Bahn, S., Volk, B., Wisden, W. J. Neurosci. (1994) [Pubmed]
  24. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. Paternain, A.V., Herrera, M.T., Nieto, M.A., Lerma, J. J. Neurosci. (2000) [Pubmed]
  25. Metabotropic glutamate receptor 5-induced phosphorylation of extracellular signal-regulated kinase in astrocytes depends on transactivation of the epidermal growth factor receptor. Peavy, R.D., Chang, M.S., Sanders-Bush, E., Conn, P.J. J. Neurosci. (2001) [Pubmed]
  26. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. Tölle, T.R., Berthele, A., Zieglgänsberger, W., Seeburg, P.H., Wisden, W. J. Neurosci. (1993) [Pubmed]
  27. Glutamate receptor subunits at mossy fiber-unipolar brush cell synapses: light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat. Jaarsma, D., Wenthold, R.J., Mugnaini, E. J. Comp. Neurol. (1995) [Pubmed]
  28. Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Hemby, S.E., Horman, B., Tang, W. Brain Res. (2005) [Pubmed]
  29. Localization of kainate receptor subunit GluR5-immunoreactive cells in the rat hypothalamus. Eyigor, O., Minbay, Z., Cavusoglu, I., Jennes, L. Brain Res. Mol. Brain Res. (2005) [Pubmed]
  30. Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. Holzwarth, J.A., Gibbons, S.J., Brorson, J.R., Philipson, L.H., Miller, R.J. J. Neurosci. (1994) [Pubmed]
  31. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Partin, K.M., Patneau, D.K., Winters, C.A., Mayer, M.L., Buonanno, A. Neuron (1993) [Pubmed]
 
WikiGenes - Universities