Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation.
Accumulation of L-kynurenine and quinolinic acid (QUIN) in the brain occurs after either ischemic brain injury or after systemic administration of pokeweed mitogen. Although conversion of L-[13C6]tryptophan to [13C6]-QUIN has not been demonstrated in brain either from normal gerbils or from gerbils given pokeweed mitogen, direct conversion in brain tissue does occur 4 days after transient cerebral ischemia. Increased activities of enzymes distal to indoleamine-2,3-dioxygenase may determine whether L-kynurenine is converted to QUIN. One day after 10 min of cerebral ischemia, the activities of kynureninase and 3-hydroxy-3,4-dioxygenase were increased in the hippocampus, but local QUIN levels and the activities of the indoleamine-2,3-dioxygenase and kynurenine-3-hydroxylase were unchanged. By days 2 and 4 after ischemia, however, the activities of all these enzymes in the hippocampus as well as QUIN levels were significantly increased. Kynurenine aminotransferase activity in the hippocampus was unchanged on days 1 and 2 after ischemia but was decreased on day 4, at a time when local kynurenic acid levels were unchanged. A putative precursor of QUIN, [13C6]anthranilic acid, was not converted to [13C6]QUIN in the hippocampus of either normal or 4-day post-ischemic gerbils. Gerbil macrophages stimulated by endotoxin in vitro converted L-[13C6]tryptophan to [13C6]QUIN. Kinetic analysis of kynurenine-3-hydroxylase activity in the cerebral cortex of postischemic gerbils showed that Vmax increased, without changes in Km. Systemic administration of pokeweed mitogen increased indoleamine-2,3-dioxygenase and kynureninase activities in the brain without significant changes in kynurenine-3-hydroxylase or 3-hydroxyanthranilate-3,4-dioxygenase activities. Increases in kynurenine-3-hydroxylase activity, in conjunction with induction of indoleamine-2,3-dioxygenase, kynureninase, and 3-hydroxyanthranilate-3,4-dioxygenase in macrophage infiltrates at the site of brain injury, may explain the ability of postischemic hippocampus to convert L-[13C6]tryptophan to [13C6]QUIN.[1]References
- Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. Saito, K., Nowak, T.S., Suyama, K., Quearry, B.J., Saito, M., Crowley, J.S., Markey, S.P., Heyes, M.P. J. Neurochem. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg