The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences.

G alpha q and G alpha 11, members of the Gq family of G-proteins, transduce signals from receptors to the beta isoenzymes of phosphatidyl-inositol-specific phospholipase C (PI-PLC). The receptor specificity of these alpha subunits is unknown. G alpha q and G alpha 11 are ubiquitously expressed in tissues; however, there have been conflicting reports of the presence or absence of G alpha 11 protein in haematopoietic cells. Platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors activate PI-PLC via G alpha q, but the role of G alpha 11 is uncertain. To define their roles in platelet activation we studied G alpha q and G alpha 11 gene expression by immunotransfer blotting and by reverse transcription of mRNA followed by PCR (RT-PCR) and direct sequencing. An antiserum specific for mouse G alpha 11 failed to identify G alpha 11 in dog or human platelets or in dog liver, a tissue known to contain G alpha 11. RT-PCR performed with gene-specific primers demonstrated G alpha q mRNA, but not G alpha 11 mRNA, in normal human and mouse platelets and in thromboxane-sensitive and thromboxane-insensitive dog platelets. Studies of mouse and dog liver and human retina confirmed that the cDNA, primers and probes used could amplify and recognize G alpha 11 in other tissues. However, species-specific oligonucleotide primers and probes were essential to demonstrate G alpha 11, but not G alpha q, mRNA. Compared with mouse cDNA, dog and human G alpha 11 cDNA had twice as many nucleotide substitutions (approx. 12% compared with approx. 6%) as G alpha q, G alpha q mRNA was also found in mature erythrocytes but G alpha 11 mRNA was not identified, whereas both G alpha q and G alpha 11 mRNAs were found in bone marrow stem cells. Therefore G alpha 11 gene expression in haematopoietic cells is linked with cellular differentiation. The lack of G alpha 11 indicates that signal transduction from platelet TXA2/PGH2 receptors to PI-PLC occurs via G alpha q, and that G alpha 11 deficiency is not responsible for defective activation of PI-PLC in thromboxane-insensitive dog platelets. Despite the high degree of similarity that exists between G alpha q and G alpha 11, significantly greater species-specific variation in nucleotide sequence is present in G alpha 11 than in G alpha q. Cellular specificity and species specificity are important characteristics of these Gq family G-proteins.[1]


WikiGenes - Universities