The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PGH2     (Z)-7-[(1S,2R,3S,4R)-3- [(E,3S)-3...

Synonyms: PGH 2, CHEMBL2074582, CHEBI:15554, HMDB01381, LMFA03010010, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of prostaglandin h2

 

High impact information on prostaglandin h2

 

Chemical compound and disease context of prostaglandin h2

 

Biological context of prostaglandin h2

  • [125I]BOP was competitively displaced from its platelet binding site by stable TXA2/PGH2 analogues [14].
  • Ii is concluded that the endoperoxide (PGG2) is essential in normal hemostasis because of its role in initiating the release reaction required for aggregation by collagen and the second wave of aggregation caused by, e.g., ADP [15].
  • One potential site at which dexamethasone can influence prostanoid-mediated vasoconstriction may be at the level of the vascular TXA2/PGH2 receptor [16].
  • Prostacyclin (PG1(2)), PGE2, PGD2, TXA2/PGH2, and sulfidopeptide-LT receptors are being characterized in terms of distribution, signal-transduction mechanisms, and agonist-mediated regulation [17].
  • Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system [18].
 

Anatomical context of prostaglandin h2

  • Adding prostaglandin H2 (PGH2) directly to lymphocytes led to 6KPGF1 alpha production [19].
  • The binding of [125I][1S-(1 alpha,2 beta(5Z),3 alpha(1E,3R)4 alpha)]-7-[3-(3- hydroxy-4-(p-iodophenoxy)-1-butenyl)-7-oxabicyclo[2.2.1] heptan-2-yl]-5-heptanoic acid ([125I]BOP), a potent TXA2/PGH2 receptor agonist, to rabbit aortic membranes was saturable, displaceable, and dependent on protein concentration [16].
  • Furthermore, vascular smooth muscle cells with functional TXA2/PGH2 receptors were cultured from human saphenous veins and provide a potentially useful in vitro system for the further study of TXA2/PGH2 receptor-mediated phenomena in human vascular tissue [20].
  • Identification of functional PGH2/TxA2 receptors on human endothelial cells [21].
  • The present study was designed to examine the activation of MAP kinase and S6 kinase in guinea pig coronary artery smooth muscle cells (CASMC) in response to stimulation by a TXA2/PGH2 mimetic, I-BOP ([1S-(1 alpha,2 beta(5Z),3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4-(4'- iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2-yl]-5-h eptenoic acid) [22].
 

Associations of prostaglandin h2 with other chemical compounds

 

Gene context of prostaglandin h2

 

Analytical, diagnostic and therapeutic context of prostaglandin h2

  • In SHR but not WKY aortas, acetylcholine (10(-5) mol/L, 5 minutes) caused a significant endothelium-dependent release of PGH2 as measured by gas chromatography/mass spectrometry [33].
  • Independent identification of brain TXA2/PGH2 receptors was provided by P2Ab/TxAb immunohistochemistry, which demonstrated specific labeling of discrete myelin-containing fiber tracts [34].
  • Identification of this protein as the TXA2/PGH2 receptor was based on: 1) an identical electrophoretic mobility to authentic receptor; 2) immunoblotting of TxAb against P1Ab and P2Ab-purified protein; 3) immunoblotting of P1Ab/P2Ab against TxAb-purified protein; and 4) specific [3H]SQ29,548 binding to TxAb-purified protein [34].
  • Site-directed mutagenesis of the catalytic tetrad residues revealed that a dyad of Lys77 and His110, and a triad of Tyr52, Lys77, and His110 are essential for the reduction of PGH2 and 9,10-PQ, respectively [35].
  • Thus, in SH rats the enhanced arteriolar constriction to increases in intravascular pressure seems to be due to the production of endothelium-derived constrictor factors PGH2 and endothelin [36].

References

  1. Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction. Dorn, G.W., Liel, N., Trask, J.L., Mais, D.E., Assey, M.E., Halushka, P.V. Circulation (1990) [Pubmed]
  2. Prostaglandin D2 formation by malignant melanoma cells correlates inversely with cellular metastatic potential. Fitzpatrick, F.A., Stringfellow, D.A. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  3. Arthur C. Corcoran Memorial Lecture. The role of eicosanoids in angiotensin-dependent hypertension. Nasjletti, A. Hypertension (1998) [Pubmed]
  4. Increased catabolism of 25-hydroxyvitamin D in patients with partial gastrectomy and elevated 1,25-dihydroxyvitamin D levels. Implications for metabolic bone disease. Davies, M., Heys, S.E., Selby, P.L., Berry, J.L., Mawer, E.B. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  5. Cellular activation by thromboxane A2 and other eicosanoids. Reilly, M., Fitzgerald, G.A. Eur. Heart J. (1993) [Pubmed]
  6. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Moncada, S., Gryglewski, R., Bunting, S., Vane, J.R. Nature (1976) [Pubmed]
  7. Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Needleman, P., Kulkarni, P.S., Raz, A. Science (1977) [Pubmed]
  8. Thromboxane-insensitive dog platelets have impaired activation of phospholipase C due to receptor-linked G protein dysfunction. Johnson, G.J., Leis, L.A., Dunlop, P.C. J. Clin. Invest. (1993) [Pubmed]
  9. Role of thromboxane in impaired renal vasodilatation response to acetylcholine in hypercholesterolemic rats. Bank, N., Aynedjian, H.S. J. Clin. Invest. (1992) [Pubmed]
  10. Thromboxane generation in patients with essential hypertension or cerebrovascular disease and effect of oral aspirin. Matsumoto, M., Nukada, T., Uyama, O., Yoneda, S., Imaizumi, M., Miyamoto, T., Kayama, N. Thromb. Haemost. (1980) [Pubmed]
  11. Antagonism of thromboxane A2/prostaglandin H2 by 13-azaprostanoic acid prevents platelet deposition to the de-endothelialized rabbit aorta in vivo. Le Breton, G.C., Lipowski, J.P., Feinberg, H., Venton, D.L., Ho, T., Wu, K.K. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
  12. Platelet endoperoxide/thromboxane A2 (PGH2/TXA2) receptors in patients with myeloproliferative disorders. Faul, C., Renn, W., Jaschonek, K. Prostaglandins Leukot. Essent. Fatty Acids (1991) [Pubmed]
  13. Nitric oxide and superoxide anions in vascular reactivity of renovascular hypertensive rats. Vega, G.W., Rosón, M.I., Bellver, A., Celentano, M.M., de la Riva, I.J. Clin. Exp. Hypertens. (1995) [Pubmed]
  14. Distinct platelet thromboxane A2/prostaglandin H2 receptor subtypes. A radioligand binding study of human platelets. Dorn, G.W. J. Clin. Invest. (1989) [Pubmed]
  15. Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclo-oxygenase deficiency. Malmsten, C., Hamberg, M., Svensson, J., Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  16. Characterization of the vascular thromboxane A2/prostaglandin endoperoxide receptor in rabbit aorta. Regulation by dexamethasone. Sessa, W.C., Halushka, P.V., Okwu, A., Nasjletti, A. Circ. Res. (1990) [Pubmed]
  17. Eicosanoid biosynthesis and action: novel opportunities for pharmacological intervention. Nicosia, S., Patrono, C. FASEB J. (1989) [Pubmed]
  18. Prostaglandin endoperoxide/thromboxane A2 receptor desensitization. Cross-talk with adenylate cyclase in human platelets. Murray, R., Shipp, E., FitzGerald, G.A. J. Biol. Chem. (1990) [Pubmed]
  19. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. Wu, K.K., Papp, A.C., Manner, C.E., Hall, E.R. J. Clin. Invest. (1987) [Pubmed]
  20. Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U46619-induced 45calcium efflux. Dorn, G.W., Sens, D., Chaikhouni, A., Mais, D., Halushka, P.V. Circ. Res. (1987) [Pubmed]
  21. Identification of functional PGH2/TxA2 receptors on human endothelial cells. Kent, K.C., Collins, L.J., Schwerin, F.T., Raychowdhury, M.K., Ware, J.A. Circ. Res. (1993) [Pubmed]
  22. Thromboxane A2/prostaglandin H2-stimulated mitogenesis of coronary artery smooth muscle cells involves activation of mitogen-activated protein kinase and S6 kinase. Morinelli, T.A., Zhang, L.M., Newman, W.H., Meier, K.E. J. Biol. Chem. (1994) [Pubmed]
  23. Synergistic activation by collagen and 15-hydroxy-9 alpha,11 alpha-peroxidoprosta-5,13-dienoic acid (PGH2) of phosphatidylinositol metabolism and arachidonic acid release in human platelets. Rittenhouse, S.E., Allen, C.L. J. Clin. Invest. (1982) [Pubmed]
  24. Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Gresele, P., Deckmyn, H., Nenci, G.G., Vermylen, J. Trends Pharmacol. Sci. (1991) [Pubmed]
  25. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Hamberg, M., Svensson, J., Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  26. Inhibition of human platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. Gorman, R.R., Bundy, G.L., Peterson, D.C., Sun, F.F., Miller, O.V., Fitzpatrick, F.A. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  27. Stereospecific conversion of prostaglandin D2 to (5Z,13E)-(15S)-9 alpha-11 beta,15-trihydroxyprosta-5,13-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2) and of prostaglandin H2 to prostaglandin F2 alpha by bovine lung prostaglandin F synthase. Watanabe, K., Iguchi, Y., Iguchi, S., Arai, Y., Hayaishi, O., Roberts, L.J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  28. Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. Meade, E.A., McIntyre, T.M., Zimmerman, G.A., Prescott, S.M. J. Biol. Chem. (1999) [Pubmed]
  29. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. Meade, E.A., Smith, W.L., DeWitt, D.L. J. Biol. Chem. (1993) [Pubmed]
  30. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). Smith, T., McCracken, J., Shin, Y.K., DeWitt, D. J. Biol. Chem. (2000) [Pubmed]
  31. Tumor necrosis factor-alpha inversely regulates prostaglandin D2 and prostaglandin E2 production in murine macrophages. Synergistic action of cyclic AMP on cyclooxygenase-2 expression and prostaglandin E2 synthesis. Fournier, T., Fadok, V., Henson, P.M. J. Biol. Chem. (1997) [Pubmed]
  32. Interactions of PGH synthase isozymes-1 and -2 with NSAIDs. Smith, W.L., Meade, E.A., DeWitt, D.L. Ann. N. Y. Acad. Sci. (1994) [Pubmed]
  33. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Ge, T., Hughes, H., Junquero, D.C., Wu, K.K., Vanhoutte, P.M., Boulanger, C.M. Circ. Res. (1995) [Pubmed]
  34. Purification of rat brain, rabbit aorta, and human platelet thromboxane A2/prostaglandin H2 receptors by immunoaffinity chromatography employing anti-peptide and anti-receptor antibodies. Borg, C., Lim, C.T., Yeomans, D.C., Dieter, J.P., Komiotis, D., Anderson, E.G., Le Breton, G.C. J. Biol. Chem. (1994) [Pubmed]
  35. Structural and mutational analysis of Trypanosoma brucei prostaglandin H2 reductase provides insight into the catalytic mechanism of aldo-ketoreductases. Kilunga, K.B., Inoue, T., Okano, Y., Kabututu, Z., Martin, S.K., Lazarus, M., Duszenko, M., Sumii, Y., Kusakari, Y., Matsumura, H., Kai, Y., Sugiyama, S., Inaka, K., Inui, T., Urade, Y. J. Biol. Chem. (2005) [Pubmed]
  36. Endothelin and prostaglandin H2 enhance arteriolar myogenic tone in hypertension. Huang, A., Koller, A. Hypertension (1997) [Pubmed]
 
WikiGenes - Universities