The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

sn-Gro-1-P     [(2S)-2,3- dihydroxypropoxy]phosphonic acid

Synonyms: CHEBI:16221, AC1L9712, C00623, 6tim, 5746-57-6, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of glyceryloxyphosphonic acid

 

High impact information on glyceryloxyphosphonic acid

 

Biological context of glyceryloxyphosphonic acid

 

Associations of glyceryloxyphosphonic acid with other chemical compounds

 

Gene context of glyceryloxyphosphonic acid

References

  1. The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium (S. faecalis ATCC 9790) from phosphatidylkojibiosyl diacylglycerol and phosphatidylglycerol. Ganfield, M.C., Pieringer, R.A. J. Biol. Chem. (1980) [Pubmed]
  2. Phosphatidylglycerol as biosynthetic precursor for the poly(glycerol phosphate) backbone of bifidobacterial lipoteichoic acid. Op den Camp, H.J., Oosterhof, A., Veerkamp, J.H. Biochem. J. (1985) [Pubmed]
  3. Biosynthesis of D-alanyl-lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. Taron, D.J., Childs, W.C., Neuhaus, F.C. J. Bacteriol. (1983) [Pubmed]
  4. Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Zevenhuizen, L.P., van Veldhuizen, A., Fokkens, R.H. Antonie Van Leeuwenhoek (1990) [Pubmed]
  5. A method for determination of the absolute configuration of chiral glycerol residues in natural products using TEMPO oxidation and characterization of the glyceric acids formed. Rundlöf, T., Widmalm, G. Anal. Biochem. (1996) [Pubmed]
  6. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. Koga, Y., Kyuragi, T., Nishihara, M., Sone, N. J. Mol. Evol. (1998) [Pubmed]
  7. Generation of H2O2 in brain mitochondria. Patole, M.S., Swaroop, A., Ramasarma, T. J. Neurochem. (1986) [Pubmed]
  8. Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase. Daiyasu, H., Hiroike, T., Koga, Y., Toh, H. Protein Eng. (2002) [Pubmed]
  9. Interactions of aluminium(III) with glycerolphosphates and glycerophosphorylcholine. Cael, V., Champmartin, D., Rubini, P. J. Inorg. Biochem. (2003) [Pubmed]
  10. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. Lenaz, G. IUBMB Life (2001) [Pubmed]
  11. Active site of Zn(2+)-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1. Han, J.S., Ishikawa, K. Archaea (2005) [Pubmed]
  12. Purification and properties of sn-glycerol-1-phosphate dehydrogenase from Methanobacterium thermoautotrophicum: characterization of the biosynthetic enzyme for the enantiomeric glycerophosphate backbone of ether polar lipids of Archaea. Nishihara, M., Koga, Y. J. Biochem. (1997) [Pubmed]
 
WikiGenes - Universities