The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Methanobacteriaceae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Methanobacteriaceae

 

High impact information on Methanobacteriaceae

  • We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth) [2].
  • The methanogenic archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus contain a dual-specificity prolyl-tRNA synthetase (ProCysRS) that accurately forms both prolyl-tRNA (Pro-tRNA) and cysteinyl-tRNA (Cys-tRNA) suitable for in vivo translation [3].
  • Whereas eubacterial and eukaryotic riboflavin synthases form homotrimers, archaeal riboflavin synthases from Methanocaldococcus jannaschii and Methanothermobacter thermoautrophicus are homopentamers with sequence similarity to the 6,7-dimethyl-8-ribityllumazine synthase catalyzing the penultimate step in riboflavin biosynthesis [4].
  • We show here that Methanothermobacter thermautotrophicus GatD acts as a glutaminase but only in the presence of both Glu-tRNA(Gln) and the other subunit, GatE [5].
  • This report shows that the helicase activity of an MCM homologue from the archaeon Methanothermobacter thermautotrophicus is inhibited in the presence of the Cdc6 homologues [6].
 

Biological context of Methanobacteriaceae

 

Anatomical context of Methanobacteriaceae

 

Associations of Methanobacteriaceae with chemical compounds

 

Gene context of Methanobacteriaceae

 

Analytical, diagnostic and therapeutic context of Methanobacteriaceae

References

  1. Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. Fischer, M., Schott, A.K., Römisch, W., Ramsperger, A., Augustin, M., Fidler, A., Bacher, A., Richter, G., Huber, R., Eisenreich, W. J. Mol. Biol. (2004) [Pubmed]
  2. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. Boomershine, W.P., McElroy, C.A., Tsai, H.Y., Wilson, R.C., Gopalan, V., Foster, M.P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis. Stathopoulos, C., Kim, W., Li, T., Anderson, I., Deutsch, B., Palioura, S., Whitman, W., Söll, D. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Crystal structure of an archaeal pentameric riboflavin synthase in complex with a substrate analog inhibitor: stereochemical implications. Ramsperger, A., Augustin, M., Schott, A.K., Gerhardt, S., Krojer, T., Eisenreich, W., Illarionov, B., Cushman, M., Bacher, A., Huber, R., Fischer, M. J. Biol. Chem. (2006) [Pubmed]
  5. Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase. Feng, L., Sheppard, K., Tumbula-Hansen, D., Söll, D. J. Biol. Chem. (2005) [Pubmed]
  6. Regulation of minichromosome maintenance helicase activity by Cdc6. Shin, J.H., Grabowski, B., Kasiviswanathan, R., Bell, S.D., Kelman, Z. J. Biol. Chem. (2003) [Pubmed]
  7. Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem? Ambrogelly, A., Kamtekar, S., Sauerwald, A., Ruan, B., Tumbula-Hansen, D., Kennedy, D., Ahel, I., Söll, D. Cell. Mol. Life Sci. (2004) [Pubmed]
  8. Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. Duin, E.C., Madadi-Kahkesh, S., Hedderich, R., Clay, M.D., Johnson, M.K. FEBS Lett. (2002) [Pubmed]
  9. Bioenergetics of the formyl-methanofuran dehydrogenase and heterodisulfide reductase reactions in Methanothermobacter thermautotrophicus. de Poorter, L.M., Geerts, W.G., Theuvenet, A.P., Keltjens, J.T. Eur. J. Biochem. (2003) [Pubmed]
  10. Selective extraction of subunit D of the Na(+)-translocating methyltransferase and subunit c of the A(1)A(0) ATPase from the cytoplasmic membrane of methanogenic archaea by chloroform/methanol and characterization of subunit c of Methanothermobacter thermoautotrophicus as a 16-kDa proteolipid. Ruppert, C., Schmid, R., Hedderich, R., Müller, V. FEMS Microbiol. Lett. (2001) [Pubmed]
  11. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. Mahlert, F., Bauer, C., Jaun, B., Thauer, R.K., Duin, E.C. J. Biol. Inorg. Chem. (2002) [Pubmed]
  12. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. Goenrich, M., Duin, E.C., Mahlert, F., Thauer, R.K. J. Biol. Inorg. Chem. (2005) [Pubmed]
  13. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. Mahlert, F., Grabarse, W., Kahnt, J., Thauer, R.K., Duin, E.C. J. Biol. Inorg. Chem. (2002) [Pubmed]
  14. The phosphoenolpyruvate carboxylase from Methanothermobacter thermautotrophicus has a novel structure. Patel, H.M., Kraszewski, J.L., Mukhopadhyay, B. J. Bacteriol. (2004) [Pubmed]
  15. Identification of an Archaeal type II isopentenyl diphosphate isomerase in methanothermobacter thermautotrophicus. Barkley, S.J., Cornish, R.M., Poulter, C.D. J. Bacteriol. (2004) [Pubmed]
  16. Filling a gap in the central metabolism of archaea: prediction of a novel aconitase by comparative-genomic analysis. Makarova, K.S., Koonin, E.V. FEMS Microbiol. Lett. (2003) [Pubmed]
  17. The anabolic pyruvate oxidoreductase from Methanococcus maripaludis. Lin, W.C., Yang, Y.L., Whitman, W.B. Arch. Microbiol. (2003) [Pubmed]
  18. Functional expression and characterization of an archaeal aquaporin. AqpM from methanothermobacter marburgensis. Kozono, D., Ding, X., Iwasaki, I., Meng, X., Kamagata, Y., Agre, P., Kitagawa, Y. J. Biol. Chem. (2003) [Pubmed]
  19. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A., Harada, H. Int. J. Syst. Evol. Microbiol. (2002) [Pubmed]
 
WikiGenes - Universities