The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Rhizobiaceae


High impact information on Rhizobiaceae


Chemical compound and disease context of Rhizobiaceae


Biological context of Rhizobiaceae


Gene context of Rhizobiaceae


  1. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Guzman-Verri, C., Manterola, L., Sola-Landa, A., Parra, A., Cloeckaert, A., Garin, J., Gorvel, J.P., Moriyon, I., Moreno, E., Lopez-Goni, I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Biosynthesis of membrane-derived oligosaccharides. Membrane-bound glucosyltransferase system from Escherichia coli requires polyprenyl phosphate. Weissborn, A.C., Rumley, M.K., Kennedy, E.P. J. Biol. Chem. (1991) [Pubmed]
  3. Reduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. Abola, A.P., Willits, M.G., Wang, R.C., Long, S.R. J. Bacteriol. (1999) [Pubmed]
  4. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. Dupont, L., Garcia, I., Poggi, M.C., Alloing, G., Mandon, K., Le Rudulier, D. J. Bacteriol. (2004) [Pubmed]
  5. Identification, cloning, and sequence analysis of the nitrogen regulation gene ntrC of Agrobacterium tumefaciens C58. Wardhan, H., McPherson, M.J., Sastry, G.R. Mol. Plant Microbe Interact. (1989) [Pubmed]
  6. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. Sharypova, L.A., Niehaus, K., Scheidle, H., Holst, O., Becker, A. J. Biol. Chem. (2003) [Pubmed]
  7. Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Rumley, M.K., Therisod, H., Weissborn, A.C., Kennedy, E.P. J. Biol. Chem. (1992) [Pubmed]
  8. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder, A.C., de Rudder, K.E., Narberhaus, F., Fischer, H.M., Hennecke, H., Geiger, O. Mol. Microbiol. (2001) [Pubmed]
  9. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhizobium leguminosarum. Amar, M., Patriarca, E.J., Manco, G., Bernard, P., Riccio, A., Lamberti, A., Defez, R., Iaccarino, M. Mol. Microbiol. (1994) [Pubmed]
  10. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. King, G.M. Appl. Environ. Microbiol. (2003) [Pubmed]
  11. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. Basu, S.S., Karbarz, M.J., Raetz, C.R. J. Biol. Chem. (2002) [Pubmed]
  12. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Loubens, I., Debarbieux, L., Bohin, A., Lacroix, J.M., Bohin, J.P. Mol. Microbiol. (1993) [Pubmed]
  13. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. Parke, D., Rynne, F., Glenn, A. J. Bacteriol. (1991) [Pubmed]
  14. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Parke, D., Ornston, L.N. J. Bacteriol. (1986) [Pubmed]
  15. Rhizobium sp. strain ORS571 ammonium assimilation and nitrogen fixation. Donald, R.G., Ludwig, R.A. J. Bacteriol. (1984) [Pubmed]
  16. Site-directed mutagenesis in Escherichia coli of a stable R772::Ti cointegrate plasmid from Agrobacterium tumefaciens. Hille, J., van Kan, J., Klasen, I., Schilperoort, R. J. Bacteriol. (1983) [Pubmed]
  17. Cytochrome aa3 gene regulation in members of the family Rhizobiaceae: comparison of copper and oxygen effects in Bradyrhizobium japonicum and Rhizobium tropici. Gabel, C., Bittinger, M.A., Maier, R.J. Appl. Environ. Microbiol. (1994) [Pubmed]
  18. oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region. Chain, P.S., Hernandez-Lucas, I., Golding, B., Finan, T.M. J. Bacteriol. (2000) [Pubmed]
  19. Genetic snapshots of the Rhizobium species NGR234 genome. Viprey, V., Rosenthal, A., Broughton, W.J., Perret, X. Genome Biol. (2000) [Pubmed]
  20. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture. Cornish, A., Greenwood, J.A., Jones, C.W. J. Gen. Microbiol. (1989) [Pubmed]
  21. Sinorhizobium meliloti putA gene regulation: a new model within the family Rhizobiaceae. Soto, M.J., Jiménez-Zurdo, J.I., van Dillewijn, P., Toro, N. J. Bacteriol. (2000) [Pubmed]
  22. Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae. Baek, C.H., Farrand, S.K., Park, D.K., Lee, K.E., Hwang, W., Kim, K.S. FEMS Microbiol. Ecol. (2005) [Pubmed]
  23. Negative transcriptional regulation of virulence and oncogenes of the Ti plasmid by Ros bearing a conserved C2H2-zinc finger motif. Kado, C.I. Plasmid (2002) [Pubmed]
WikiGenes - Universities