The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bifidobacterium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bifidobacterium

 

High impact information on Bifidobacterium

  • The Bifidobacterium strains lacked A-degrading activity but were otherwise similar; these released 60-80% of the anthrone-reacting hexoses but not the A antigenic structures from hog gastric mucin [6].
  • The crystal structure of L-lactate dehydrogenase from Bifidobacterium longum, determined to 2.5 A resolution, contains a regular 1:1 complex of T- and R-state tetramers [7].
  • Conversely, neither germ-free IL-10 mice nor IL-10 KO mice colonized as adults, with a pure culture of Candida albicans, Escherichia coli, Lactobacillus casei, L. reuteri, L. acidophilus, a Bifidobacterium sp., Lactococcus lactis, or a Bacillus sp. developed IBD during the 25- to 30-week study [8].
  • The reconstitution of intestinal flora of GF mice with Bifidobacterium infantis, one of the predominant bacteria in the intestinal flora, restored the susceptibility of these Th2 responses to oral tolerance induction; however, this was only effective when such reconstitution was performed in neonates, but not in mice at an older age [9].
  • Intestinal Bifidobacterium species induce varying cytokine production [10].
 

Chemical compound and disease context of Bifidobacterium

 

Biological context of Bifidobacterium

 

Anatomical context of Bifidobacterium

 

Gene context of Bifidobacterium

 

Analytical, diagnostic and therapeutic context of Bifidobacterium

References

  1. Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Verdú, E.F., Bercík, P., Bergonzelli, G.E., Huang, X.X., Blennerhasset, P., Rochat, F., Fiaux, M., Mansourian, R., Corthésy-Theulaz, I., Collins, S.M. Gastroenterology (2004) [Pubmed]
  2. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Sekine, K., Toida, T., Saito, M., Kuboyama, M., Kawashima, T., Hashimoto, Y. Cancer Res. (1985) [Pubmed]
  3. A novel IgA protease from Clostridium sp. capable of cleaving IgA1 and IgA2 A2m(1) but not IgA2 A2m(2) allotype paraproteins. Fujiyama, Y., Kobayashi, K., Senda, S., Benno, Y., Bamba, T., Hosoda, S. J. Immunol. (1985) [Pubmed]
  4. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J.H., Walsh, S.V., O'neil, D.A., Macfarlane, G.T. Gut (2005) [Pubmed]
  5. In vitro activity of Sch 34343 and cefbuperazone against anaerobic bacteria. Shafran, S.D., Wong, J., Chow, A.W. Antimicrob. Agents Chemother. (1985) [Pubmed]
  6. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. Hoskins, L.C., Agustines, M., McKee, W.B., Boulding, E.T., Kriaris, M., Niedermeyer, G. J. Clin. Invest. (1985) [Pubmed]
  7. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Iwata, S., Kamata, K., Yoshida, S., Minowa, T., Ohta, T. Nat. Struct. Biol. (1994) [Pubmed]
  8. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Balish, E., Warner, T. Am. J. Pathol. (2002) [Pubmed]
  9. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. Sudo, N., Sawamura, S., Tanaka, K., Aiba, Y., Kubo, C., Koga, Y. J. Immunol. (1997) [Pubmed]
  10. Intestinal Bifidobacterium species induce varying cytokine production. He, F., Morita, H., Hashimoto, H., Hosoda, M., Kurisaki, J., Ouwehand, A.C., Isolauri, E., Benno, Y., Salminen, S. J. Allergy Clin. Immunol. (2002) [Pubmed]
  11. Yoghurt with Bifidobacterium longum reduces erythromycin-induced gastrointestinal effects. Colombel, J.F., Cortot, A., Neut, C., Romond, C. Lancet (1987) [Pubmed]
  12. Allosteric activation of L-lactate dehydrogenase analyzed by hybrid enzymes with effector-sensitive and -insensitive subunits. Fushinobu, S., Kamata, K., Iwata, S., Sakai, H., Ohta, T., Matsuzawa, H. J. Biol. Chem. (1996) [Pubmed]
  13. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Gill, H.S., Rutherfurd, K.J., Cross, M.L., Gopal, P.K. Am. J. Clin. Nutr. (2001) [Pubmed]
  14. Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Challa, A., Rao, D.R., Chawan, C.B., Shackelford, L. Carcinogenesis (1997) [Pubmed]
  15. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Singh, J., Rivenson, A., Tomita, M., Shimamura, S., Ishibashi, N., Reddy, B.S. Carcinogenesis (1997) [Pubmed]
  16. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., Pridmore, R.D., Arigoni, F. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  17. Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Lee, J.H., O'Sullivan, D.J. Appl. Environ. Microbiol. (2006) [Pubmed]
  18. Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Hung, M.N., Xia, Z., Hu, N.T., Lee, B.H. Appl. Environ. Microbiol. (2001) [Pubmed]
  19. Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Kitaoka, M., Tian, J., Nishimoto, M. Appl. Environ. Microbiol. (2005) [Pubmed]
  20. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Kok, R.G., de Waal, A., Schut, F., Welling, G.W., Weenk, G., Hellingwerf, K.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  21. Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. Petschow, B.W., Talbott, R.D. J. Clin. Microbiol. (1990) [Pubmed]
  22. Bifidobacterium Lactis sp. 420 up-regulates cyclooxygenase (Cox)-1 and down-regulates Cox-2 gene expression in a Caco-2 cell culture model. Nurmi, J.T., Puolakkainen, P.A., Rautonen, N.E. Nutrition and cancer. (2005) [Pubmed]
  23. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. Shu, Q., Qu, F., Gill, H.S. J. Pediatr. Gastroenterol. Nutr. (2001) [Pubmed]
  24. Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Charteris, W.P., Kelly, P.M., Morelli, L., Collins, J.K. Lett. Appl. Microbiol. (1998) [Pubmed]
  25. Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression. Parche, S., Beleut, M., Rezzonico, E., Jacobs, D., Arigoni, F., Titgemeyer, F., Jankovic, I. J. Bacteriol. (2006) [Pubmed]
  26. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. Lammers, K.M., Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., Matteuzzi, D., Campieri, M. FEMS Immunol. Med. Microbiol. (2003) [Pubmed]
  27. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. Marin, M.L., Lee, J.H., Murtha, J., Ustunol, Z., Pestka, J.J. J. Dairy Sci. (1997) [Pubmed]
  28. Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independent of receptor binding capacity and iron saturation level. Petschow, B.W., Talbott, R.D., Batema, R.P. J. Med. Microbiol. (1999) [Pubmed]
  29. Effect of bacterial metabolism in the intestine on colorectal tumors induced by 1,2-dimethylhydrazine in transgenic mice harboring human prototype c-Ha-ras genes. Ohno, K., Narushima, S., Takeuchi, S., Itoh, K., Itoh, T., Hioki, K., Nomura, T. J. Exp. Clin. Cancer Res. (2001) [Pubmed]
  30. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Duncan, S.H., Louis, P., Flint, H.J. Appl. Environ. Microbiol. (2004) [Pubmed]
  31. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Auty, M.A., Gardiner, G.E., McBrearty, S.J., O'Sullivan, E.O., Mulvihill, D.M., Collins, J.K., Fitzgerald, G.F., Stanton, C., Ross, R.P. Appl. Environ. Microbiol. (2001) [Pubmed]
  32. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). Katayama, T., Sakuma, A., Kimura, T., Makimura, Y., Hiratake, J., Sakata, K., Yamanoi, T., Kumagai, H., Yamamoto, K. J. Bacteriol. (2004) [Pubmed]
  33. Quantitative detection of probiotic Bifidobacterium strains in bacterial mixtures by using real-time PCR. Vitali, B., Candela, M., Matteuzzi, D., Brigidi, P. Syst. Appl. Microbiol. (2003) [Pubmed]
  34. Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Tanaka, Y., Tanioka, S., Tanaka, M., Tanigawa, T., Kitamura, Y., Minami, S., Okamoto, Y., Miyashita, M., Nanno, M. Biomaterials (1997) [Pubmed]
 
WikiGenes - Universities