The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CTK8J9687     4-[2-[3-[[4-[[[5-(6- aminopurin-9-yl)-4...

Synonyms: AC1L19X5, 6712-05-6, glutaconyl-coenzyme A, Coenzyme A, glutaconyl-, Coenzyme A, S-(5-hydrogen 2-pentenedioate)
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of glutaconyl-CoA


High impact information on glutaconyl-CoA

  • The active sites of the dimeric Gcdalpha lie at the two interfaces between the mono mers, whereas the N-terminal domain provides the glutaconyl-CoA-binding site and the C-terminal domain binds the biotinyllysine moiety [1].
  • Glutaconyl-CoA decarboxylase from Acidaminococcus fermentans (clostridal cluster IX), a strict anaerobic inhabitant of animal intestines, uses the free energy of decarboxylation (delta G(o) approximately -30 kJ mol-1) in order to translocate Na+ from the inside through the cytoplasmic membrane [5].
  • The largest subunit, alpha or GcdA (65 kDa), catalyses the transfer of CO2 from glutaconyl-CoA to biotin covalently attached to the gamma-subunit, GcdC [5].
  • The sodium ion translocating glutaconyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon [5].
  • Earlier observations of a second, lower affinity binding site for Na+ of glutaconyl-CoA decarboxylase (apparent K(m) 30 mM) were confirmed by identification of the cysteine residue 243 of GcdB between the putative hellces VII and VIII, which could be specifically protected from alkylation by Na+ [5].

Chemical compound and disease context of glutaconyl-CoA


Biological context of glutaconyl-CoA


Anatomical context of glutaconyl-CoA


Associations of glutaconyl-CoA with other chemical compounds


  1. Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase. Wendt, K.S., Schall, I., Huber, R., Buckel, W., Jacob, U. EMBO J. (2003) [Pubmed]
  2. Carbon-13 labelled biotin--a new probe for the study of enzyme catalyzed carboxylation and decarboxylation reactions. Bendrat, K., Berger, S., Buckel, W., Etzel, W.A., Röhm, K.H. FEBS Lett. (1990) [Pubmed]
  3. The biotin-dependent sodium ion pump glutaconyl-CoA decarboxylase from Fusobacterium nucleatum (subsp. nucleatum). Comparison with the glutaconyl-CoA decarboxylases from gram-positive bacteria. Beatrix, B., Bendrat, K., Rospert, S., Buckel, W. Arch. Microbiol. (1990) [Pubmed]
  4. Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Buckel, W., Semmler, R. Eur. J. Biochem. (1983) [Pubmed]
  5. The sodium ion translocating glutaconyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon. Braune, A., Bendrat, K., Rospert, S., Buckel, W. Mol. Microbiol. (1999) [Pubmed]
  6. Adenosine triphosphate-induced electron transfer in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Hans, M., Bill, E., Cirpus, I., Pierik, A.J., Hetzel, M., Alber, D., Buckel, W. Biochemistry (2002) [Pubmed]
  7. A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Buckel, W., Semmler, R. FEBS Lett. (1982) [Pubmed]
  8. Substrate stereochemistry of the biotin-dependent sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Buckel, W. Eur. J. Biochem. (1986) [Pubmed]
  9. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. Boiangiu, C.D., Jayamani, E., Brugel, D., Herrmann, G., Kim, J., Forzi, L., Hedderich, R., Vgenopoulou, I., Pierik, A.J., Steuber, J., Buckel, W. J. Mol. Microbiol. Biotechnol. (2005) [Pubmed]
  10. Metabolism of pent-4-enoate in rat heart. Reduction of the double bond. Hiltunen, J.K., Davis, E.J. Biochem. J. (1981) [Pubmed]
  11. Glutaric aciduria: biochemical and morphologic considerations. Goodman, S.I., Norenberg, M.D., Shikes, R.H., Breslich, D.J., Moe, P.G. J. Pediatr. (1977) [Pubmed]
  12. Mitochondrial and peroxisomal metabolism of glutaryl-CoA. Vamecq, J., de Hoffmann, E., Van Hoof, F. Eur. J. Biochem. (1985) [Pubmed]
  13. Unusual enzymes involved in five pathways of glutamate fermentation. Buckel, W. Appl. Microbiol. Biotechnol. (2001) [Pubmed]
WikiGenes - Universities