The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1L19XE     4-[2-[3-[[4-[[[5-(6- aminopurin-9-yl)-4...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of glutaryl-CoA

  • Cloning of glutaryl-CoA dehydrogenase cDNA, and expression of wild type and mutant enzymes in Escherichia coli [1].
  • PURPOSE OF REVIEW: The hydroxymethyl glutaryl coenzyme A reductase inhibitors or statins offer important benefits for the large populations of individuals at high risk for coronary heart disease [2].
  • The adult bat, with its huge glutaric acid excretion and deficient liver glutaryl-CoA dehydrogenase, metabolically mimics patients affected with glutaric aciduria type I. The bat does not, however, display the neurologic manifestations seen in patients [3].
  • The exchange of oxygen atoms between acetate, glutaryl-CoA, and the catalytic glutamate residue in glutaconate CoA-transferase from Acidaminococcus fermentans was analyzed using [(18)O(2)]acetate together with matrix-assisted laser desorption/ionization time of flight mass spectrometry of an appropriate undecapeptide [4].
  • Although diabetes is a major cause of chronic kidney disease (CKD), limited data describe the cardiovascular benefit of hydroxymethyl glutaryl CoA reductase inhibitors (statins) in people with both of these conditions [5].

Psychiatry related information on glutaryl-CoA


High impact information on glutaryl-CoA


Chemical compound and disease context of glutaryl-CoA


Biological context of glutaryl-CoA


Anatomical context of glutaryl-CoA


Associations of glutaryl-CoA with other chemical compounds


Gene context of glutaryl-CoA


Analytical, diagnostic and therapeutic context of glutaryl-CoA


  1. Cloning of glutaryl-CoA dehydrogenase cDNA, and expression of wild type and mutant enzymes in Escherichia coli. Goodman, S.I., Kratz, L.E., DiGiulio, K.A., Biery, B.J., Goodman, K.E., Isaya, G., Frerman, F.E. Hum. Mol. Genet. (1995) [Pubmed]
  2. Safety considerations for statins. Bolego, C., Baetta, R., Bellosta, S., Corsini, A., Paoletti, R. Curr. Opin. Lipidol. (2002) [Pubmed]
  3. Conservation of central nervous system glutaryl-coenzyme A dehydrogenase in fruit-eating bats with glutaric aciduria and deficient hepatic glutaryl-coenzyme A dehydrogenase. McMillan, T.A., Gibson, K.M., Sweetman, L., Meyers, G.S., Green, R. J. Biol. Chem. (1988) [Pubmed]
  4. Oxygen exchange between acetate and the catalytic glutamate residue in glutaconate CoA-transferase from Acidaminococcus fermentans. Implications for the mechanism of CoA-ester hydrolysis. Selmer, T., Buckel, W. J. Biol. Chem. (1999) [Pubmed]
  5. Effect of pravastatin in people with diabetes and chronic kidney disease. Tonelli, M., Keech, A., Shepherd, J., Sacks, F., Tonkin, A., Packard, C., Pfeffer, M., Simes, J., Isles, C., Furberg, C., West, M., Craven, T., Curhan, G. J. Am. Soc. Nephrol. (2005) [Pubmed]
  6. Kynurenines impair energy metabolism in rat cerebral cortex. Schuck, P.F., Tonin, A., da Costa Ferreira, G., Viegas, C.M., Latini, A., Duval Wannmacher, C.M., de Souza Wyse, A.T., Dutra-Filho, C.S., Wajner, M. Cell. Mol. Neurobiol. (2007) [Pubmed]
  7. Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. Masucci-Magoulas, L., Plump, A., Jiang, X.C., Walsh, A., Breslow, J.L., Tall, A.R. J. Clin. Invest. (1996) [Pubmed]
  8. Specific glutaryl-CoA dehydrogenating activity is deficient in cultured fibroblasts from glutaric aciduria patients. Hyman, D.B., Tanaka, K. J. Clin. Invest. (1984) [Pubmed]
  9. Isovaleryl-CoA dehydrogenase: demonstration in rat liver mitochondria by ion exchange chromatography and isoelectric focusing. Noda, C., Rhead, W.J., Tanaka, K. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  10. Lamin B, caspase-3 activity, and apoptosis induction by a combination of HMG-CoA reductase inhibitor and COX-2 inhibitors: a novel approach in developing effective chemopreventive regimens. Swamy, M.V., Cooma, I., Reddy, B.S., Rao, C.V. Int. J. Oncol. (2002) [Pubmed]
  11. Effect of simvastatin on qualitative and quantitative changes of lipoprotein metabolism in CAPD patients. Wanner, C., Lubrich-Birkner, I., Summ, O., Wieland, H., Schollmeyer, P. Nephron (1992) [Pubmed]
  12. Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Marcelli, M., Cunningham, G.R., Haidacher, S.J., Padayatty, S.J., Sturgis, L., Kagan, C., Denner, L. Cancer Res. (1998) [Pubmed]
  13. The function of Arg-94 in the oxidation and decarboxylation of glutaryl-CoA by human glutaryl-CoA dehydrogenase. Dwyer, T.M., Rao, K.S., Westover, J.B., Kim, J.J., Frerman, F.E. J. Biol. Chem. (2001) [Pubmed]
  14. Bioenergetics in glutaryl-coenzyme A dehydrogenase deficiency: a role for glutaryl-coenzyme A. Sauer, S.W., Okun, J.G., Schwab, M.A., Crnic, L.R., Hoffmann, G.F., Goodman, S.I., Koeller, D.M., Kölker, S. J. Biol. Chem. (2005) [Pubmed]
  15. The effect of reagents that increase membrane fluidity on the activity of 3-hydroxyl-3-methyl glutaryl coenzyme A reductase in the CHO-K1 cell. Sinensky, M., Kleiner, J. J. Cell. Physiol. (1981) [Pubmed]
  16. 3-Hydroxy-3-methyl glutaryl coenzyme A reductase inhibition modulates vasopressin-stimulated Ca2+ responses in rat A10 vascular smooth muscle cells. Ng, L.L., Davies, J.E., Wojcikiewicz, R.J. Circ. Res. (1994) [Pubmed]
  17. The effect of insulin and catecholamines on the activities of 3-hydroxy-3-methyl glutaryl coenzyme A reductase and acyl-coenzyme A: cholesterol-o-acyltransferase in isolated rat hepatocytes. Devery, R., Tomkin, G.H. Diabetologia (1986) [Pubmed]
  18. Effects of 26-aminocholesterol, 27-hydroxycholesterol, and 25-hydroxycholesterol on proliferation and cholesterol homeostasis in arterial myocytes. Corsini, A., Verri, D., Raiteri, M., Quarato, P., Paoletti, R., Fumagalli, R. Arterioscler. Thromb. Vasc. Biol. (1995) [Pubmed]
  19. Glutaric aciduria type I: clinical heterogeneity and neuroradiologic features. Amir, N., el-Peleg, O., Shalev, R.S., Christensen, E. Neurology (1987) [Pubmed]
  20. Inhibition of protein isoprenylation impairs rho-regulated early cellular response to genotoxic stress. Gnad, R., Aktories, K., Kaina, B., Fritz, G. Mol. Pharmacol. (2000) [Pubmed]
  21. Hypomethylation of beta-hydroxy-beta-methyl-glutaryl coenzyme A reductase gene and its expression during hepatocarcinogenesis in the rat. Coni, P., Pang, J., Pichiri-Coni, G., Hsu, S., Rao, P.M., Rajalakshmi, S., Sarma, D.S. Carcinogenesis (1992) [Pubmed]
  22. Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Fu, Z., Wang, M., Paschke, R., Rao, K.S., Frerman, F.E., Kim, J.J. Biochemistry (2004) [Pubmed]
  23. E2F-1-induced p53-independent apoptosis in transgenic mice. Holmberg, C., Helin, K., Sehested, M., Karlström, O. Oncogene (1998) [Pubmed]
  24. Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Vamecq, J., Van Hoof, F. Biochem. J. (1984) [Pubmed]
  25. Acute profound dystonia in infants with glutaric acidemia. Bergman, I., Finegold, D., Gartner, J.C., Zitelli, B.J., Claassen, D., Scarano, J., Roe, C.R., Stanley, C., Goodman, S.I. Pediatrics (1989) [Pubmed]
  26. The purification and characterization of glutaryl-coenzyme A dehydrogenase from porcine and human liver. Lenich, A.C., Goodman, S.I. J. Biol. Chem. (1986) [Pubmed]
  27. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Kölker, S., Garbade, S.F., Greenberg, C.R., Leonard, J.V., Saudubray, J.M., Ribes, A., Kalkanoglu, H.S., Lund, A.M., Merinero, B., Wajner, M., Troncoso, M., Williams, M., Walter, J.H., Campistol, J., Martí-Herrero, M., Caswill, M., Burlina, A.B., Lagler, F., Maier, E.M., Schwahn, B., Tokatli, A., Dursun, A., Coskun, T., Chalmers, R.A., Koeller, D.M., Zschocke, J., Christensen, E., Burgard, P., Hoffmann, G.F. Pediatr. Res. (2006) [Pubmed]
  28. New insight into mechanisms of allograft transplantation in the rat by differential display: macrophage scavenger receptor-A brings to light. Chiffoleau, E., Heslan, J.M., Soulillou, J.P., Cuturi, M.C. Mol. Med. (2000) [Pubmed]
  29. Determination of the novel hydroxymethyl glutaryl coenzyme A reductase inhibitor (RP 61969) and its dihydroxy acid hydrolysis product in human plasma by reversed-phase high-performance liquid chromatography. Page, K.M., Mallett, C.D., Page, M.R. J. Chromatogr. (1992) [Pubmed]
  30. Early prenatal diagnosis in two pregnancies at risk for glutaryl-CoA dehydrogenase deficiency. Holme, E., Kyllerman, M., Lindstedt, S. J. Inherit. Metab. Dis. (1989) [Pubmed]
WikiGenes - Universities