The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

XYL2  -  D-xylulose reductase XYL2

Saccharomyces cerevisiae S288c

Synonyms: D-xylulose reductase, XDH, Xylitol dehydrogenase, YLR070C
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on XYL2

  • Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method [1].
  • Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid [2].
  • To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3 [2].
  • We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters [3].
  • The S. cerevisiae genetic background included single integrated copies of P. stipitis XYL1 and XYL2 driven by the S. cerevisiae TDH1 promoter [4].

Biological context of XYL2

  • Directed mutagenesis has been used to identify a set of amino acids in the Pichia stipitis xylitol dehydrogenase, encoded by the xylitol dehydrogenase gene XYL2, which is involved in specific NAD binding [5].
  • Copy numbers of XYL2 were varied either by integrating XYL2 into the chromosome or by transforming cells with XYL2 in a multicopy vector [6].
  • The XYL2 open-reading frame codes for a protein of 363 amino acids with a predicted molecular mass of 38.5 kDa [7].
  • The genomic XYL2 gene was isolated and the nucleotide sequence of the 1089 bp structural gene, and of adjacent non-coding regions, was determined [7].

Associations of XYL2 with chemical compounds


Regulatory relationships of XYL2

  • A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2 [11].

Other interactions of XYL2


  1. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Ko, B.S., Kim, J., Kim, J.H. Appl. Environ. Microbiol. (2006) [Pubmed]
  2. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Jin, Y.S., Alper, H., Yang, Y.T., Stephanopoulos, G. Appl. Environ. Microbiol. (2005) [Pubmed]
  3. Endogenous xylose pathway in Saccharomyces cerevisiae. Toivari, M.H., Salusjärvi, L., Ruohonen, L., Penttilä, M. Appl. Environ. Microbiol. (2004) [Pubmed]
  4. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Jin, Y.S., Ni, H., Laplaza, J.M., Jeffries, T.W. Appl. Environ. Microbiol. (2003) [Pubmed]
  5. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Metzger, M.H., Hollenberg, C.P. Eur. J. Biochem. (1995) [Pubmed]
  6. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Jin, Y.S., Jeffries, T.W. Appl. Biochem. Biotechnol. (2003) [Pubmed]
  7. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Kötter, P., Amore, R., Hollenberg, C.P., Ciriacy, M. Curr. Genet. (1990) [Pubmed]
  8. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (2000) [Pubmed]
  9. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson, B., Hahn-Hägerdal, B. FEMS Yeast Res. (2002) [Pubmed]
  10. Dual relationships of xylitol and alcohol dehydrogenases in families of two protein types. Persson, B., Hallborn, J., Walfridsson, M., Hahn-Hägerdal, B., Keränen, S., Penttilä, M., Jörnvall, H. FEBS Lett. (1993) [Pubmed]
  11. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (1995) [Pubmed]
  12. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Walfridsson, M., Anderlund, M., Bao, X., Hahn-Hägerdal, B. Appl. Microbiol. Biotechnol. (1997) [Pubmed]
WikiGenes - Universities