The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TAL1  -  sedoheptulose-7-phosphate:D-glyceraldehyde...

Saccharomyces cerevisiae S288c

Synonyms: L9638.6, Transaldolase, YLR354C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TAL1

 

High impact information on TAL1

 

Biological context of TAL1

 

Anatomical context of TAL1

  • In addition, transketolase, transaldolase, and glucose-6-phosphatase, a known cisternal enzyme, are inactivated by chymotrypsin and subtilisin only in disrupted hepatic microsomes under conditions in which NADPH-cytochrome c reductase, an enzyme on the external surface, is inactivated equally in intact and disrupted microsomes [7].
 

Associations of TAL1 with chemical compounds

 

Other interactions of TAL1

 

Analytical, diagnostic and therapeutic context of TAL1

  • Furthermore, both transaldolase isoenzymes which were detected in wild-type crude extracts by immunoblotting were missing in the deletion mutants [6].

References

  1. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. Kleijn, R.J., van Winden, W.A., van Gulik, W.M., Heijnen, J.J. FEBS J. (2005) [Pubmed]
  2. The growth rate-limiting reaction in methanol-assimilating yeasts. Brinkmann, U., Mueller, R.H., Babel, W. FEMS Microbiol. Rev. (1990) [Pubmed]
  3. Oxidation of the carbanion intermediate of transaldolase by hexacyanoferrate (III). Christen, P., Gasser, A. J. Biol. Chem. (1976) [Pubmed]
  4. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway. Jacoby, J., Hollenberg, C.P., Heinisch, J.J. Mol. Microbiol. (1993) [Pubmed]
  5. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Jin, Y.S., Alper, H., Yang, Y.T., Stephanopoulos, G. Appl. Environ. Microbiol. (2005) [Pubmed]
  6. Molecular analysis of the structural gene for yeast transaldolase. Schaaff, I., Hohmann, S., Zimmermann, F.K. Eur. J. Biochem. (1990) [Pubmed]
  7. The pentose phosphate pathway in the endoplasmic reticulum. Bublitz, C., Steavenson, S. J. Biol. Chem. (1988) [Pubmed]
  8. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Walfridsson, M., Hallborn, J., Penttilä, M., Keränen, S., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (1995) [Pubmed]
  9. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao, X., Gao, D., Qu, Y., Wang, Z., Walfridssion, M., Hahn-Hagerbal, B. Chin. J. Biotechnol. (1997) [Pubmed]
  10. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson, B., Hahn-Hägerdal, B. FEMS Yeast Res. (2002) [Pubmed]
  11. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen, J.P., Rintala, E., Aristidou, A., Ruohonen, L., Penttilä, M. Appl. Microbiol. Biotechnol. (2005) [Pubmed]
  12. A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Becker, J., Boles, E. Appl. Environ. Microbiol. (2003) [Pubmed]
  13. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase. Schaaff-Gerstenschläger, I., Zimmermann, F.K. Curr. Genet. (1993) [Pubmed]
  14. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Walfridsson, M., Anderlund, M., Bao, X., Hahn-Hägerdal, B. Appl. Microbiol. Biotechnol. (1997) [Pubmed]
 
WikiGenes - Universities