The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Glycogen Storage Disease Type II

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Glycogen Storage Disease Type II


High impact information on Glycogen Storage Disease Type II

  • Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail [6].
  • Glycogen storage disease type II (GSDII; Pompe disease), caused by inherited deficiency of acid alpha-glucosidase, is a lysosomal disorder affecting heart and skeletal muscles [7].
  • Hence, the generation of rhGAA containing high affinity ligands for the CI-MPR represents a strategy by which the potency of rhGAA and therefore the clinical efficacy of enzyme replacement therapy for Pompe disease may be improved [8].
  • Acarbose served as inhibitor of an interfering acid alpha-glucosidase present in neutrophils, which allowed the lysosomal enzyme implicated in Pompe disease to be selectively analyzed [9].
  • In Pompe disease, the concentration of a tetrasaccharide, consisting of four glucose residues, is reputedly increased in urine and plasma, but faster and more sensitive methods are required for the analysis of this, and other oligosaccharides, from biologic fluids [10].

Chemical compound and disease context of Glycogen Storage Disease Type II


Biological context of Glycogen Storage Disease Type II

  • Despite structural differences in Man-6-P receptors between birds and mammals, these studies illustrate that Man-6-P receptor mediated endocytosis is present in quail muscle cells, and demonstrate the potential of acid maltase-deficient quail to test receptor mediated enzyme replacement therapy for Pompe disease [16].

Anatomical context of Glycogen Storage Disease Type II


Gene context of Glycogen Storage Disease Type II

  • Type II glycogenosis showed an increased reactivity for desmin and vimentin [20].
  • An autosomal recessive deficiency of acid alpha-glucosidase (GAA), type II glycogenosis, is genetically and clinically heterogeneous [21].
  • These results demonstrate that remodelling the carbohydrate of rhGAA to improve its affinity for the CI-MPR represents a feasible approach to enhance the efficacy of enzyme replacement therapy for Pompe disease [22].
  • Adding acid alpha-glucosidase to cultures of Pompe's disease muscle has resulted in enzyme uptake and reduction in concentration of glycogen [23].
  • If compared with infantile AMD (Pompe's disease) our cases have a much higher residual acid alpha-glucosidase activity and show the presence of an antigenically detectable protein [24].

Analytical, diagnostic and therapeutic context of Glycogen Storage Disease Type II


  1. Biochemical, immunological, and cell genetic studies in glycogenosis type II. Reuser, A.J., Koster, J.F., Hoogeveen, A., Galjaard, H. Am. J. Hum. Genet. (1978) [Pubmed]
  2. Isolation and characterisation of a recombinant, precursor form of lysosomal acid alpha-glucosidase. Fuller, M., Van der Ploeg, A., Reuser, A.J., Anson, D.S., Hopwood, J.J. Eur. J. Biochem. (1995) [Pubmed]
  3. Primary (genetic) cardiomyopathies in infancy. A survey of possible disorders and guidelines for diagnosis. Kohlschütter, A., Hausdorf, G. Eur. J. Pediatr. (1986) [Pubmed]
  4. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Amalfitano, A., Bengur, A.R., Morse, R.P., Majure, J.M., Case, L.E., Veerling, D.L., Mackey, J., Kishnani, P., Smith, W., McVie-Wylie, A., Sullivan, J.A., Hoganson, G.E., Phillips, J.A., Schaefer, G.B., Charrow, J., Ware, R.E., Bossen, E.H., Chen, Y.T. Genet. Med. (2001) [Pubmed]
  5. Juvenile acid maltase deficiency presenting as paravertebral pseudotumour. Iancu, T.C., Lerner, A., Shiloh, H., Bashan, N., Moses, S. Eur. J. Pediatr. (1988) [Pubmed]
  6. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail. Kikuchi, T., Yang, H.W., Pennybacker, M., Ichihara, N., Mizutani, M., Van Hove, J.L., Chen, Y.T. J. Clin. Invest. (1998) [Pubmed]
  7. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Bijvoet, A.G., van de Kamp, E.H., Kroos, M.A., Ding, J.H., Yang, B.Z., Visser, P., Bakker, C.E., Verbeet, M.P., Oostra, B.A., Reuser, A.J., van der Ploeg, A.T. Hum. Mol. Genet. (1998) [Pubmed]
  8. Conjugation of mannose 6-phosphate-containing oligosaccharides to acid alpha-glucosidase improves the clearance of glycogen in pompe mice. Zhu, Y., Li, X., Kyazike, J., Zhou, Q., Thurberg, B.L., Raben, N., Mattaliano, R.J., Cheng, S.H. J. Biol. Chem. (2004) [Pubmed]
  9. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Li, Y., Scott, C.R., Chamoles, N.A., Ghavami, A., Pinto, B.M., Turecek, F., Gelb, M.H. Clin. Chem. (2004) [Pubmed]
  10. Determination of oligosaccharides in Pompe disease by electrospray ionization tandem mass spectrometry. Rozaklis, T., Ramsay, S.L., Whitfield, P.D., Ranieri, E., Hopwood, J.J., Meikle, P.J. Clin. Chem. (2002) [Pubmed]
  11. Infantile Pompe's disease, lipid storage, and partial carnitine deficiency. Verity, M.A. Muscle Nerve (1991) [Pubmed]
  12. L-alanine supplementation in late infantile glycogen storage disease type II. Bodamer, O.A., Haas, D., Hermans, M.M., Reuser, A.J., Hoffmann, G.F. Pediatric neurology. (2002) [Pubmed]
  13. alpha-Glucosidase in Pompe's disease. Broadhead, D.M., Butterworth, J. J. Inherit. Metab. Dis. (1978) [Pubmed]
  14. Type II glycogenosis and thyroxine binding globulin deficiency in the same family. Manta, P., Kontoleon, P., Panousopoulou, A., Kalfakis, N., Christomanou, H., Papapetrou, P., Papageorgiou, C. Funct. Neurol. (1996) [Pubmed]
  15. Liposomal amphotericin B treatment in a 9-month-old liver recipient. Tollemar, J., Duraj, F., Ericzon, B.G. Mycoses (1990) [Pubmed]
  16. Recombinant human acid alpha-glucosidase corrects acid alpha-glucosidase-deficient human fibroblasts, quail fibroblasts, and quail myoblasts. Yang, H.W., Kikuchi, T., Hagiwara, Y., Mizutani, M., Chen, Y.T., Van Hove, J.L. Pediatr. Res. (1998) [Pubmed]
  17. Adeno-associated virus-mediated transfer of human acid maltase gene results in a transient reduction of glycogen accumulation in muscle of Japanese quail with acid maltase deficiency. Lin, C.Y., Ho, C.H., Hsieh, Y.H., Kikuchi, T. Gene Ther. (2002) [Pubmed]
  18. Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Raben, N., Fukuda, T., Gilbert, A.L., de Jong, D., Thurberg, B.L., Mattaliano, R.J., Meikle, P., Hopwood, J.J., Nagashima, K., Nagaraju, K., Plotz, P.H. Mol. Ther. (2005) [Pubmed]
  19. Anaesthesia for diagnostic muscle biopsy in an infant with Pompe's disease. Rosen, K.R., Broadman, L.M. Canadian Anaesthetists' Society journal. (1986) [Pubmed]
  20. Immunocytochemical studies on desmin and vimentin in neuromuscular disorders. Young, C., Lin, M.Y., Wang, P.J., Shen, Y.Z. J. Formos. Med. Assoc. (1994) [Pubmed]
  21. Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Boerkoel, C.F., Exelbert, R., Nicastri, C., Nichols, R.C., Miller, F.W., Plotz, P.H., Raben, N. Am. J. Hum. Genet. (1995) [Pubmed]
  22. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Zhu, Y., Li, X., McVie-Wylie, A., Jiang, C., Thurberg, B.L., Raben, N., Mattaliano, R.J., Cheng, S.H. Biochem. J. (2005) [Pubmed]
  23. Natural bone marrow transplantation in cattle with Pompe's disease. Howell, J.M., Dorling, P.R., Shelton, J.N., Taylor, E.G., Palmer, D.G., Di Marco, P.N. Neuromuscul. Disord. (1991) [Pubmed]
  24. Acid maltase deficiency in non-identical adult twins. A morphological and biochemical study. Martin, J.J., de Barsy, T., den Tandt, W.R. J. Neurol. (1976) [Pubmed]
  25. Lysosomal glycogen accumulation in rat liver and its in vivo kinetics after a single intraperitoneal injection of acarbose, an alpha-glucosidase inhibitor. Konishi, Y., Okawa, Y., Hosokawa, S., Fujimori, K., Fuwa, H. J. Biochem. (1990) [Pubmed]
  26. Demonstration of acid maltase protein in Pompe disease by use of immunohistochemical and enzyme immunoassay methods. Ninomiya, N., Iwamasa, T., Matsuda, I., Nonaka, I. J. Inherit. Metab. Dis. (1983) [Pubmed]
  27. Thin-layer chromatography of oligosaccharides in urine as a rapid indication for the diagnosis of lysosomal acid maltase deficiency (Pompe's disease). Blom, W., Luteyn, J.C., Kelholt-Dijkman, H.H., Huijmans, J.G., Loonen, M.C. Clin. Chim. Acta (1983) [Pubmed]
WikiGenes - Universities