The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Calypsol     2-(2-chlorophenyl)-2- methylamino...

Synonyms: Cetamina, Ketaject, Ketanest, Ketoject, ketamine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ketalar

 

Psychiatry related information on Ketalar

 

High impact information on Ketalar

 

Chemical compound and disease context of Ketalar

 

Biological context of Ketalar

 

Anatomical context of Ketalar

  • LKB film autoradiography of 2-]3H]deoxy-D-glucose uptake shows that ketamine, administered in anesthetic doses, alters the pattern of metabolic activity in rat hippocampus [21].
  • The functional influence of the frontal cortex (FC) on the noradrenergic nucleus locus coeruleus (LC) was studied in the rat under ketamine anesthesia [22].
  • Simultaneous extracellular recordings were made in the auditory thalamus and cortex of the ketamine-anesthetized cat under several stimulus conditions [23].
  • Subanesthetic doses of ketamine, a noncompetitive NMDA receptor antagonist, impair prefrontal cortex (PFC) function in the rat and produce symptoms in humans similar to those observed in schizophrenia and dissociative states, including impaired performance of frontal lobe-sensitive tests [24].
  • The dose-effect curve is considerably flatter with several drugs (diethyl ether, cyclopropane, fluroxene, isoflurane, and ketamine), presumably from sympathetic nervous-system activation [25].
 

Associations of Ketalar with other chemical compounds

  • Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses [17].
  • METHOD: Healthy subjects (n = 16) completed 4 test days involving the administration of lamotrigine, 300 mg by mouth, or placebo 2 hours prior to administration of ketamine (0.26 mg/kg by intravenous bolus and 0.65 mg/kg per hour by intravenous infusion) or placebo in a randomized order under double-blind conditions [26].
  • MAIN OUTCOME MEASURES: On each test day, participants received amphetamine (a 1-minute infusion of amphetamine sulfate, 0.25 mg/kg, or saline) and ketamine (a 1-minute intravenous infusion of ketamine, 0.23 mg/kg, followed by a 1-hour infusion of 0.5 mg/kg or an identical saline bolus and infusion) [27].
  • The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively suppressed during the prolonged phase of the slow (<1-Hz) sleep oscillation that is associated with hyperpolarization of cortical neurons [28].
  • Pure-tone-frequency RFs were obtained from adult guinea pigs under general anesthesia (sodium pentobarbital or ketamine) before and repeatedly after (1 hr-8 weeks) a 20- to 30-trial session of pairing a non-best-frequency tone with mild footshock [29].
  • We also observed that during expression of motor effects which are thought to be related to the positive symptoms of schizophrenia, ketamine potentiated synaptic efficacy in the prefrontal-accumbens pathway and increased the extracellular levels of glutamate in the NAc [30].
 

Gene context of Ketalar

 

Analytical, diagnostic and therapeutic context of Ketalar

  • However, ketamine analgesia remained intact [36].
  • PURPOSE: To compare the efficacy, characteristics of onset/recovery, and safety of ketamine/atropine/midazolam with meperidine/midazolam used as premedication for painful procedures in children with cancer [5].
  • The noncompetitive NMDA antagonists ketamine (10-30 mg/kg) and MK-801 (0.1 and 0.5 mg/kg) dose-dependently impaired the spatial delayed alternation performance compared with the saline-treated control group [37].
  • A thorough dose-response study using microdialysis in conscious rats indicated that low doses of ketamine (10, 20, and 30 mg/kg) increase glutamate outflow in the PFC, suggesting that at these doses ketamine may increase glutamatergic neurotransmission in the PFC at non-NMDA glutamate receptors [24].
  • Several specific antagonists, including MK-801, dextrorphan, dextromethorphan, and ketamine, have already been used at low doses in humans for other indications and are potential candidates for Phase I clinical trials [38].

References

  1. Sedation in the intensive care unit: a systematic review. Ostermann, M.E., Keenan, S.P., Seiferling, R.A., Sibbald, W.J. JAMA (2000) [Pubmed]
  2. The development and maintenance of human visceral pain hypersensitivity is dependent on the N-methyl-D-aspartate receptor. Willert, R.P., Woolf, C.J., Hobson, A.R., Delaney, C., Thompson, D.G., Aziz, Q. Gastroenterology (2004) [Pubmed]
  3. A ketamine-induced rat model of tardive dyskinesia. Marco, L.A., Joshi, R.S. Prog. Neurobiol. (1992) [Pubmed]
  4. MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Sharp, F.R., Jasper, P., Hall, J., Noble, L., Sagar, S.M. Ann. Neurol. (1991) [Pubmed]
  5. Ketamine-midazolam versus meperidine-midazolam for painful procedures in pediatric oncology patients. Marx, C.M., Stein, J., Tyler, M.K., Nieder, M.L., Shurin, S.B., Blumer, J.L. J. Clin. Oncol. (1997) [Pubmed]
  6. The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Ellison, G. Brain Res. Brain Res. Rev. (1995) [Pubmed]
  7. Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Honey, G.D., Honey, R.A., O'Loughlin, C., Sharar, S.R., Kumaran, D., Suckling, J., Menon, D.K., Sleator, C., Bullmore, E.T., Fletcher, P.C. Cereb. Cortex (2005) [Pubmed]
  8. Altered NMDA glutamate receptor antagonist response in individuals with a family vulnerability to alcoholism. Petrakis, I.L., Limoncelli, D., Gueorguieva, R., Jatlow, P., Boutros, N.N., Trevisan, L., Gelernter, J., Krystal, J.H. The American journal of psychiatry. (2004) [Pubmed]
  9. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Umbricht, D., Koller, R., Vollenweider, F.X., Schmid, L. Biol. Psychiatry (2002) [Pubmed]
  10. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Zarate, C.A., Singh, J.B., Carlson, P.J., Brutsche, N.E., Ameli, R., Luckenbaugh, D.A., Charney, D.S., Manji, H.K. Arch. Gen. Psychiatry (2006) [Pubmed]
  11. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Corlett, P.R., Honey, G.D., Aitken, M.R., Dickinson, A., Shanks, D.R., Absalom, A.R., Lee, M., Pomarol-Clotet, E., Murray, G.K., McKenna, P.J., Robbins, T.W., Bullmore, E.T., Fletcher, P.C. Arch. Gen. Psychiatry (2006) [Pubmed]
  12. Involvement of nitric oxide and prostaglandins in gastric mucosal hyperemia of portal-hypertensive anesthetized rats. Casadevall, M., Panés, J., Piqué, J.M., Marroni, N., Bosch, J., Whittle, B.J. Hepatology (1993) [Pubmed]
  13. Protecting the ischemic spinal cord during aortic clamping. The influence of anesthetics and hypothermia. Naslund, T.C., Hollier, L.H., Money, S.R., Facundus, E.C., Skenderis, B.S. Ann. Surg. (1992) [Pubmed]
  14. ECT stimulus intensity: are present ECT devices too limited? Krystal, A.D., Dean, M.D., Weiner, R.D., Tramontozzi, L.A., Connor, K.M., Lindahl, V.H., Massie, R.W. The American journal of psychiatry. (2000) [Pubmed]
  15. Altered membrane properties of cerebral vascular smooth muscle following subarachnoid hemorrhage: an electrophysiological study. I. Changes in resting membrane potential (Em) and effect on the electrogenic pump potential contribution to Em. Waters, A., Harder, D.R. Stroke (1985) [Pubmed]
  16. Measurement of regional brain glucose utilization in vivo using [2(-14)C] glucose. Hawkins, R., Hass, W.K., Ransohoff, J. Stroke (1979) [Pubmed]
  17. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers, M.B., Charney, D.S. Arch. Gen. Psychiatry (1994) [Pubmed]
  18. Identification and properties of N-methyl-D-aspartate receptors in rat brain synaptic plasma membranes. Monaghan, D.T., Cotman, C.W. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Pleural and pericardial pressures limit fetal right ventricular output. Grant, D.A., Walker, A.M. Circulation (1996) [Pubmed]
  20. Effects of ketamine on leading saccades during smooth-pursuit eye movements may implicate cerebellar dysfunction in schizophrenia. Avila, M.T., Weiler, M.A., Lahti, A.C., Tamminga, C.A., Thaker, G.K. The American journal of psychiatry. (2002) [Pubmed]
  21. Correlation of regional brain metabolism with receptor localization during ketamine anesthesia: combined autoradiographic 2-[3H]deoxy-D-glucose receptor binding technique. Hammer, R.P., Herkenham, M., Pert, C.B., Quirion, R. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Inhibitory influence of frontal cortex on locus coeruleus neurons. Sara, S.J., Hervé-Minvielle, A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  23. Stimulus-based state control in the thalamocortical system. Miller, L.M., Schreiner, C.E. J. Neurosci. (2000) [Pubmed]
  24. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Moghaddam, B., Adams, B., Verma, A., Daly, D. J. Neurosci. (1997) [Pubmed]
  25. Effect of anesthetic drugs on myocardial performance in man. Merin, R.G. Annu. Rev. Med. (1977) [Pubmed]
  26. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Anand, A., Charney, D.S., Oren, D.A., Berman, R.M., Hu, X.S., Cappiello, A., Krystal, J.H. Arch. Gen. Psychiatry (2000) [Pubmed]
  27. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Krystal, J.H., Perry, E.B., Gueorguieva, R., Belger, A., Madonick, S.H., Abi-Dargham, A., Cooper, T.B., Macdougall, L., Abi-Saab, W., D'Souza, D.C. Arch. Gen. Psychiatry (2005) [Pubmed]
  28. Intracortical and corticothalamic coherency of fast spontaneous oscillations. Steriade, M., Amzica, F. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  29. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Weinberger, N.M., Javid, R., Lepan, B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  30. Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Razoux, F., Garcia, R., Léna, I. Neuropsychopharmacology (2007) [Pubmed]
  31. Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. Yin, X.H., Zhang, Q.G., Miao, B., Zhang, G.Y. J. Neurochem. (2005) [Pubmed]
  32. Different pressor and bronchoconstrictor properties of human big-endothelin-1, 2 (1-38) and 3 in ketamine/xylazine-anaesthetized guinea-pigs. Gratton, J.P., Rae, G.A., Claing, A., Télémaque, S., D'Orléans-Juste, P. Br. J. Pharmacol. (1995) [Pubmed]
  33. Change in neurotrophins and their receptor mRNAs in the rat forebrain after status epilepticus induced by pilocarpine. Mudò, G., Jiang, X.H., Timmusk, T., Bindoni, M., Belluardo, N. Epilepsia (1996) [Pubmed]
  34. Role of the NMDA receptor subunit in the expression of the discriminative stimulus effect induced by ketamine. Narita, M., Yoshizawa, K., Nomura, M., Aoki, K., Suzuki, T. Eur. J. Pharmacol. (2001) [Pubmed]
  35. Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro. Kawasaki, T., Ogata, M., Kawasaki, C., Ogata, J., Inoue, Y., Shigematsu, A. Anesth. Analg. (1999) [Pubmed]
  36. A pervasive mechanism for analgesia: activation of GIRK2 channels. Blednov, Y.A., Stoffel, M., Alva, H., Harris, R.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  37. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Verma, A., Moghaddam, B. J. Neurosci. (1996) [Pubmed]
  38. N-methyl-D-aspartate antagonists: ready for clinical trial in brain ischemia? Albers, G.W., Goldberg, M.P., Choi, D.W. Ann. Neurol. (1989) [Pubmed]
 
WikiGenes - Universities