The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Mogs  -  mannosyl-oligosaccharide glucosidase

Mus musculus

Synonyms: 1810017N02Rik, AI181835, Gcs1, Glucosidase 1, Glycoprotein-processing glucosidase I, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gcs1

 

High impact information on Gcs1

 

Chemical compound and disease context of Gcs1

 

Biological context of Gcs1

 

Anatomical context of Gcs1

  • Both enzymes were recovered in membranes that were less dense than the membranes containing the endoplasmic reticulum marker enzymes, glucosidase I and II [18].
  • Subsequently, systemic distribution and uptake of the proenzyme into the skeletal and cardiac muscles of the GAA-knockout mouse was confirmed [1].
  • We detected a strong expression of GAA in the injected muscle, secretion into plasma, and uptake by peripheral skeletal muscle and the heart [2].
  • We previously reported the use of an adenovirus vector expressing GAA (AdGAA) for the transduction of myoblasts and myotubes cultures from GSD II patients [2].
  • A mouse model of this disease was obtained by targeted disruption of the murine acid alpha-glucosidase gene (Gaa) in embryonic stem cells [3].
 

Associations of Gcs1 with chemical compounds

 

Regulatory relationships of Gcs1

 

Other interactions of Gcs1

 

Analytical, diagnostic and therapeutic context of Gcs1

  • Thus, by rocket immunoelectrophoresis, cells transformed with human DNA yielded a "rocket" which reacted with antibody to human but not to mouse glucosidase II and which hydrolyzed substrate in situ [27].
  • By in situ hybridization with GAA antisense mRNA, low signals were detected in most tissues throughout gestation [28].
  • Amino acid sequencing of the 80-kDa protein, followed by molecular cloning, revealed high homology to human and bovine cDNAs postulated to encode the beta-subunit of glucosidase II [29].
  • Persistent expression of vector-derived human GAA was observed in BALB/c mice up to 6 months after treatment [30].
  • After converting the liver into a "depot" organ, we found that intravenous injection of the [E1-,polymerase-]AdGAA vector allowed for hepatic secretion of GAA over an at least 20-fold dosage range [31].

References

  1. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Amalfitano, A., McVie-Wylie, A.J., Hu, H., Dawson, T.L., Raben, N., Plotz, P., Chen, Y.T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. Muscle as a putative producer of acid alpha-glucosidase for glycogenosis type II gene therapy. Martin-Touaux, E., Puech, J.P., Château, D., Emiliani, C., Kremer, E.J., Raben, N., Tancini, B., Orlacchio, A., Kahn, A., Poenaru, L. Hum. Mol. Genet. (2002) [Pubmed]
  3. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Bijvoet, A.G., van de Kamp, E.H., Kroos, M.A., Ding, J.H., Yang, B.Z., Visser, P., Bakker, C.E., Verbeet, M.P., Oostra, B.A., Reuser, A.J., van der Ploeg, A.T. Hum. Mol. Genet. (1998) [Pubmed]
  4. Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Rucker, M., Fraites, T.J., Porvasnik, S.L., Lewis, M.A., Zolotukhin, I., Cloutier, D.A., Byrne, B.J. Development (2004) [Pubmed]
  5. Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Humphries, M.J., Matsumoto, K., White, S.L., Olden, K. Cancer Res. (1986) [Pubmed]
  6. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Fuhrmann, U., Bause, E., Legler, G., Ploegh, H. Nature (1984) [Pubmed]
  7. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Molinari, M., Galli, C., Vanoni, O., Arnold, S.M., Kaufman, R.J. Mol. Cell (2005) [Pubmed]
  8. Intermediates in the assembly and degradation of class I major histocompatibility complex (MHC) molecules probed with free heavy chain-specific monoclonal antibodies. Machold, R.P., Ploegh, H.L. J. Exp. Med. (1996) [Pubmed]
  9. Persistence of glucose residues on core oligosaccharides prevents association of TCR alpha and TCR beta proteins with calnexin and results specifically in accelerated degradation of nascent TCR alpha proteins within the endoplasmic reticulum. Kearse, K.P., Williams, D.B., Singer, A. EMBO J. (1994) [Pubmed]
  10. A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme. Reitman, M.L., Trowbridge, I.S., Kornfeld, S. J. Biol. Chem. (1982) [Pubmed]
  11. Glycogen stored in skeletal but not in cardiac muscle in acid alpha-glucosidase mutant (Pompe) mice is highly resistant to transgene-encoded human enzyme. Raben, N., Jatkar, T., Lee, A., Lu, N., Dwivedi, S., Nagaraju, K., Plotz, P.H. Mol. Ther. (2002) [Pubmed]
  12. The effect of castanospermine on the oligosaccharide structures of glycoproteins from lymphoma cell lines. Palamarczyk, G., Elbein, A.D. Biochem. J. (1985) [Pubmed]
  13. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Andersson, U., Smith, D., Jeyakumar, M., Butters, T.D., Borja, M.C., Dwek, R.A., Platt, F.M. Neurobiol. Dis. (2004) [Pubmed]
  14. Glucosylceramide and the level of the glucosidase-stimulating proteins. Datta, S.C., Radin, N.S. Lipids (1986) [Pubmed]
  15. The Lec23 Chinese hamster ovary mutant is a sensitive host for detecting mutations in alpha-glucosidase I that give rise to congenital disorder of glycosylation IIb (CDG IIb). Hong, Y., Sundaram, S., Shin, D.J., Stanley, P. J. Biol. Chem. (2004) [Pubmed]
  16. Genomic organization and promoter activity of glucosidase I gene. Khan, F.A., Varma, G.M., Vijay, I.K. Glycobiology (1999) [Pubmed]
  17. Effects of the glucosidase inhibitors nojirimycin and deoxynojirimycin on the biosynthesis of membrane and secretory glycoproteins. Peyrieras, N., Bause, E., Legler, G., Vasilov, R., Claesson, L., Peterson, P., Ploegh, H. EMBO J. (1983) [Pubmed]
  18. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells. Elhammer, A., Kornfeld, S. J. Cell Biol. (1984) [Pubmed]
  19. Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: implications for therapy. Raben, N., Lu, N., Nagaraju, K., Rivera, Y., Lee, A., Yan, B., Byrne, B., Meikle, P.J., Umapathysivam, K., Hopwood, J.J., Plotz, P.H. Hum. Mol. Genet. (2001) [Pubmed]
  20. The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Pili, R., Chang, J., Partis, R.A., Mueller, R.A., Chrest, F.J., Passaniti, A. Cancer Res. (1995) [Pubmed]
  21. Processing and transport of a lysosomal membrane glycoprotein is developmentally regulated in African trypanosomes. Kelley, R.J., Brickman, M.J., Balber, A.E. Mol. Biochem. Parasitol. (1995) [Pubmed]
  22. Further regional localization of the genes for human acid alpha glucosidase (GAA), peptidase D (PEPD), and alpha mannosidase B (MANB) by somatic cell hybridization. Martiniuk, F., Ellenbogen, A., Hirschhorn, K., Hirschhorn, R. Hum. Genet. (1985) [Pubmed]
  23. Identification of a novel mechanism for the removal of glucose residues from high mannose-type oligosaccharides. Suh, K., Gabel, C.A., Bergmann, J.E. J. Biol. Chem. (1992) [Pubmed]
  24. Enzymatic alteration of the ability of mouse egg plasma membrane to interact with sperm. Boldt, J., Howe, A.M., Preble, J. Biol. Reprod. (1988) [Pubmed]
  25. alpha-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Casirola, D.M., Ferraris, R.P. Metab. Clin. Exp. (2006) [Pubmed]
  26. Lysosomal enzymes in experimental diabetic cardiomyopathy. Giacomelli, F., Skoza, L., Wiener, J. Clin. Biochem. (1980) [Pubmed]
  27. Transient expression of human neutral alpha-glucosidase AB (glucosidase II) in enzyme-deficient mouse lymphoma cells. Martiniuk, F., Pellicer, A., Hirschhorn, R. J. Biol. Chem. (1985) [Pubmed]
  28. Murine acid alpha-glucosidase: cell-specific mRNA differential expression during development and maturation. Ponce, E., Witte, D.P., Hirschhorn, R., Huie, M.L., Grabowski, G.A. Am. J. Pathol. (1999) [Pubmed]
  29. Identification of the CD45-associated 116-kDa and 80-kDa proteins as the alpha- and beta-subunits of alpha-glucosidase II. Arendt, C.W., Ostergaard, H.L. J. Biol. Chem. (1997) [Pubmed]
  30. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Fraites, T.J., Schleissing, M.R., Shanely, R.A., Walter, G.A., Cloutier, D.A., Zolotukhin, I., Pauly, D.F., Raben, N., Plotz, P.H., Powers, S.K., Kessler, P.D., Byrne, B.J. Mol. Ther. (2002) [Pubmed]
  31. Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Ding, E., Hu, H., Hodges, B.L., Migone, F., Serra, D., Xu, F., Chen, Y.T., Amalfitano, A. Mol. Ther. (2002) [Pubmed]
 
WikiGenes - Universities