The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Femoral Nerve

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Femoral Nerve

 

High impact information on Femoral Nerve

  • Histologically femoral nerves of PBGD-/- mice exhibit a marked decrease in large-caliber (>8 microm) axons and ultrastructural changes consistent with primary motor axon degeneration, secondary Schwann cell reactions, and axonal regeneration [6].
  • After an overnight fast, the lateral cutaneous femoral nerve was intraneurally stimulated for 10 min, and the local subcutaneous lipolytic response to this procedure was evaluated with microdialytic measurements of interstitial glycerol concentrations in the receptive field of the stimulated nerve fascicle [7].
  • Nonmyelinated femoral nerves from 13- to 14-week fetuses stained strongly for NGF receptor, whereas tissues from later stages of development showed a decrease in the staining intensity [8].
  • 2. Electrical stimulation of group I and group II afferents in branches of the femoral nerve which supply iliopsoas, the major hip flexor muscle, excited a large majority of intermediate zone midlumbar interneurones which receive input from quadriceps group II afferents [9].
  • Impacts of lesion severity and tyrosine kinase receptor B deficiency on functional outcome of femoral nerve injury assessed by a novel single-frame motion analysis in mice [10].
 

Chemical compound and disease context of Femoral Nerve

 

Biological context of Femoral Nerve

  • Here, the authors used heteronymous Ia facilitation of the soleus H-reflex from the femoral nerve as a specific pathway involving GABA to demonstrate a presynaptic GABA-mediated effect of propofol in humans [12].
  • Over 48 h, all patients received 0.125% bupivacaine with 1 microg/mL clonidine via a femoral nerve sheath catheter in the following manner: as a continuous infusion at 10 mL/h in Group 1; as a continuous infusion at 5 mL/h plus PCA boluses (2.5 mL/30 min) in Group 2; or as PCA boluses only (10 mL/60 min) in Group 3 [13].
  • Complications have included two intraarticular osteotomies, a femoral nerve palsy that resolved, one nonunion, and ectopic bone formation in four patients prior to the prophylactic use of indomethacin [14].
  • The HNK-1 carbohydrate, an unusual 3'-sulfated glucuronic acid epitope characteristic of many neural recognition molecules, serves as a ligand in neural cell interactions and is differentially expressed in the quadriceps and saphenous branches of the femoral nerve in the PNS of adult mice [15].
 

Anatomical context of Femoral Nerve

 

Associations of Femoral Nerve with chemical compounds

  • The authors evaluated the efficacy and incidence of side effects from blockade of the femoral nerve with 0.5% bupivacaine in 14 children with fracture of the middle third of the femoral shaft [21].
  • The effects of single or multiple injections on the volume of 0.5% ropivacaine required for femoral nerve blockade [22].
  • Analgesia before performing a spinal block in the sitting position in patients with femoral shaft fracture: a comparison between femoral nerve block and intravenous fentanyl [23].
  • We conclude that adding clonidine 1 microg/mL to local anesthetic for continuous femoral nerve block does not improve the quality of pain relief but has the potential for delaying recovery of motor function [24].
  • Forty-one patients received a single-injection femoral nerve block with 0.375% bupivacaine and 5 microg/mL epinephrine; 39 patients served as controls [25].
 

Gene context of Femoral Nerve

  • Six months after femoral nerve transfer, muscle power of the interosseous muscles and adductor pollicis recovered to MRC3, whereas that of the abductor pollicis brevis recovered to MRC1 to 2 [26].
  • Five days post lesion tenascin-C was upregulated in the muscle branch (quadriceps) but not in the cutaneous branch (saphenous) of the femoral nerve in 16-week-old animals [27].
  • We used immunohistological analysis of femoral nerve segments containing sensory and motor fascicles, stained with anti-HNK-1, M6749 and anti-neural cell adhesion molecule (NCAM) monoclonal antibodies [28].
  • In proximal sections of facial and femoral nerves, axon calibers were significantly reduced, whereas the number of myelin-competent axons was not diminished in 5- and 17-month-old P0-deficient mice [29].
  • Here, we show that short-term low-frequency electrical stimulation (1 h, 20 Hz) of the lesioned and surgically repaired femoral nerve in wild-type mice causes a motor nerve-specific enhancement of HNK-1 expression correlating with previously reported acceleration of muscle reinnervation [30].
 

Analytical, diagnostic and therapeutic context of Femoral Nerve

References

  1. Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. Lin, Q., Wu, J., Willis, W.D. J. Neurophysiol. (1999) [Pubmed]
  2. Warfarin-induced iliopsoas hemorrhage with subsequent femoral nerve palsy. King, R.B., Bechtold, D.L. Annals of emergency medicine. (1985) [Pubmed]
  3. Femoral neuropathy complicating anticoagulant therapy. Brantigan, J.W., Owens, M.L., Moody, F.G. Am. J. Surg. (1976) [Pubmed]
  4. Percutaneous decompression for femoral neuropathy secondary to heparin-induced retroperitoneal hematoma: case report and review of the literature. Merrick, H.W., Zeiss, J., Woldenberg, L.S. The American surgeon. (1991) [Pubmed]
  5. Aortic and iliac artery thrombosis in calves: nine cases (1974-1993). Morley, P.S., Allen, A.L., Woolums, A.R. J. Am. Vet. Med. Assoc. (1996) [Pubmed]
  6. Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. Lindberg, R.L., Martini, R., Baumgartner, M., Erne, B., Borg, J., Zielasek, J., Ricker, K., Steck, A., Toyka, K.V., Meyer, U.A. J. Clin. Invest. (1999) [Pubmed]
  7. The subcutaneous lipolytic response to regional neural stimulation is reduced in obese women. Dodt, C., Lönnroth, P., Fehm, H.L., Elam, M. Diabetes (2000) [Pubmed]
  8. Expression of nerve growth factor receptor during human peripheral nerve development. Scarpini, E., Ross, A.H., Rosen, J.L., Brown, M.J., Rostami, A., Koprowski, H., Lisak, R.P. Dev. Biol. (1988) [Pubmed]
  9. Activation of midlumbar neurones by afferents from anterior hindlimb muscles in the cat. Aggelopoulos, N.C., Bawa, P., Edgley, S.A. J. Physiol. (Lond.) (1996) [Pubmed]
  10. Impacts of lesion severity and tyrosine kinase receptor B deficiency on functional outcome of femoral nerve injury assessed by a novel single-frame motion analysis in mice. Irintchev, A., Simova, O., Eberhardt, K.A., Morellini, F., Schachner, M. Eur. J. Neurosci. (2006) [Pubmed]
  11. Effectiveness of bupivacaine administered via femoral nerve catheter for pain control after anterior cruciate ligament repair. Tetzlaff, J.E., Andrish, J., O'Hara, J., Dilger, J., Yoon, H.J. Journal of clinical anesthesia. (1997) [Pubmed]
  12. Propofol increases presynaptic inhibition of ia afferents in the intact human spinal cord. Baars, J.H., von Dincklage, F., Reiche, J., Rehberg, B. Anesthesiology (2006) [Pubmed]
  13. Extended "three-in-one" block after total knee arthroplasty: continuous versus patient-controlled techniques. Singelyn, F.J., Gouverneur, J.M. Anesth. Analg. (2000) [Pubmed]
  14. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Ganz, R., Klaue, K., Vinh, T.S., Mast, J.W. Clin. Orthop. Relat. Res. (1988) [Pubmed]
  15. Immunocytological localization of the HNK-1 carbohydrate in murine cerebellum, hippocampus and spinal cord using monoclonal antibodies with different epitope specificities. Rollenhagen, A., Czaniera, R., Albert, M., Wintergerst, E.S., Schachner, M. J. Neurocytol. (2001) [Pubmed]
  16. Activity of spindle afferents from cat anterior thigh muscles. II. Effects of fusimotor blockade. Loeb, G.E., Hoffer, J.A. J. Neurophysiol. (1985) [Pubmed]
  17. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Al-Majed, A.A., Tam, S.L., Gordon, T. Cell. Mol. Neurobiol. (2004) [Pubmed]
  18. Dopamine receptors in the femoral vascular bed of the dog as mediators of a vasodilator and sympathoinhibitory effect. Laubie, M., Schmitt, H., Falq, E. Eur. J. Pharmacol. (1977) [Pubmed]
  19. Femoral nerve block with 0.25% or 0.5% bupivacaine improves postoperative analgesia following outpatient arthroscopic anterior cruciate ligament repair. Mulroy, M.F., Larkin, K.L., Batra, M.S., Hodgson, P.S., Owens, B.D. Regional anesthesia and pain medicine. (2001) [Pubmed]
  20. Reflex relaxation of tracheal smooth muscle by thin-fiber muscle afferents in dogs. Kaufman, M.P., Ordway, G.A., Longhurst, J.C., Mitchell, J.H. Am. J. Physiol. (1982) [Pubmed]
  21. Femoral nerve blockade in children using bupivacaine. Ronchi, L., Rosenbaum, D., Athouel, A., Lemaitre, J.L., Bermon, F., de Villepoix, C., Le Normand, Y. Anesthesiology (1989) [Pubmed]
  22. The effects of single or multiple injections on the volume of 0.5% ropivacaine required for femoral nerve blockade. Ekatodramis, G., Bonvini, J.M., Borgeat, A. Anesth. Analg. (2002) [Pubmed]
  23. Analgesia before performing a spinal block in the sitting position in patients with femoral shaft fracture: a comparison between femoral nerve block and intravenous fentanyl. Sia, S., Pelusio, F., Barbagli, R., Rivituso, C. Anesth. Analg. (2004) [Pubmed]
  24. Adding clonidine to the induction bolus and postoperative infusion during continuous femoral nerve block delays recovery of motor function after total knee arthroplasty. Casati, A., Vinciguerra, F., Cappelleri, G., Aldegheri, G., Fanelli, G., Putzu, M., Chelly, J.E. Anesth. Analg. (2005) [Pubmed]
  25. The effects of femoral nerve blockade in conjunction with epidural analgesia after total knee arthroplasty. YaDeau, J.T., Cahill, J.B., Zawadsky, M.W., Sharrock, N.E., Bottner, F., Morelli, C.M., Kahn, R.L., Sculco, T.P. Anesth. Analg. (2005) [Pubmed]
  26. Femoral nerve transfer for treatment of brachial plexus root avulsion. Gu, Y.D., Cheng, X.M., Chen, D.S., Zhang, G.M., Xu, J.G., Chen, L., Zhang, L.Y., Cai, P.Q. Plast. Reconstr. Surg. (1998) [Pubmed]
  27. Tenascin-C expression during wallerian degeneration in C57BL/Wlds mice: possible implications for axonal regeneration. Fruttiger, M., Schachner, M., Martini, R. J. Neurocytol. (1995) [Pubmed]
  28. Specific expression of an HNK-1 carbohydrate epitope and NCAM on femoral nerve Schwann cells in mice. Saito, H., Nakao, Y., Takayama, S., Toyama, Y., Asou, H. Neurosci. Res. (2005) [Pubmed]
  29. Loss of distal axons and sensory Merkel cells and features indicative of muscle denervation in hindlimbs of P0-deficient mice. Frei, R., Mötzing, S., Kinkelin, I., Schachner, M., Koltzenburg, M., Martini, R. J. Neurosci. (1999) [Pubmed]
  30. BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Eberhardt, K.A., Irintchev, A., Al-Majed, A.A., Simova, O., Brushart, T.M., Gordon, T., Schachner, M. Exp. Neurol. (2006) [Pubmed]
  31. The anatomical basis for femoral nerve palsy following iliacus hematoma. Nobel, W., Marks, S.C., Kubik, S. J. Neurosurg. (1980) [Pubmed]
  32. Comparison of lumbar plexus block versus conventional opioid analgesia after total knee replacement. Serpell, M.G., Millar, F.A., Thomson, M.F. Anaesthesia. (1991) [Pubmed]
  33. Intraoperative single-shot "3-in-1" femoral nerve block with ropivacaine 0.25%, ropivacaine 0.5% or bupivacaine 0.25% provides comparable 48-hr analgesia after unilateral total knee replacement. Ng, H.P., Cheong, K.F., Lim, A., Lim, J., Puhaindran, M.E. Canadian journal of anaesthesia = Journal canadien d'anesthésie. (2001) [Pubmed]
 
WikiGenes - Universities