The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rubia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rubia

  • The transformation of Rubia cordifolia L. cells by the 35S- rolB and 35S- rolC genes of Agrobacterium rhizogenes caused a growth inhibition of the resulting cultures and an induction of the biosynthesis of anthraquinone-type phytoalexins [1].
 

High impact information on Rubia

  • Lucidin, the glycoside mixture and Rubia Teep gave rise to DNA adducts, but alizarin did not [2].
  • Analysis by 32P-postlabelling revealed that lucidin, the glycoside mixture and Rubia Teep, but not alizarin, formed DNA adducts in all the tissues examined but that the adduct patterns were organ-specific [2].
  • Alizarin, lucidin, a glycoside mixture containing alizarinprimeveroside and lucidinprimeveroside, and Rubia Teep (a herbal drug made from Rubia tinctorum containing lucidin) were incubated with primary rat hepatocytes for 24 h and the isolated DNA was analysed by 32P-postlabelling [2].
  • Synthesis of [Gly-1]RA-VII, [Gly-2]RA-VII, and [Gly-4]RA-VII. Glycine-containing analogues of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants [3].
  • Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes [1].
 

Chemical compound and disease context of Rubia

  • In order to approach lucidin formation (a strong mutagen or a carcinogen) from a physiological standpoint, hairy roots of Rubia tinctorum L. were established by a transformation of Agrobacterium rhizogenes strain 15834 and cultured in a liquid woody plant medium without plant hormones [4].
 

Biological context of Rubia

 

Anatomical context of Rubia

  • Male Parkes mice were treated orally for 4 days with alizarin (10 mg/d), lucidin (2 mg/d), the glycoside mixture (20 mg/d) or Rubia Teep (1/2 tablet/d) and DNA was isolated from liver, kidney, duodenum and colon [2].
 

Associations of Rubia with chemical compounds

 

Gene context of Rubia

  • Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway [11].
  • The study sites were selected within the EU-funded RUBIA project, and were as follows: the upper Kelmend Province of Albania; the Capannori area in Eastern Tuscany and the Bagnocavallo area of Romagna, Italy; Cercle de Ouezanne, Morocco; Sierra de Aracena y Picos de Aroche Natural Park in the province of Huelva, Spain; the St [12].
  • Antioxidant and antimicrobial activities of Onosma argentatum and Rubia peregrina [13].
 

Analytical, diagnostic and therapeutic context of Rubia

  • Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars [14].

References

  1. Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Bulgakov, V.P., Tchernoded, G.K., Mischenko, N.P., Shkryl, Y.N., Glazunov, V.P., Fedoreyev, S.A., Zhuravlev, Y.N. Planta (2003) [Pubmed]
  2. Evaluation of DNA-binding activity of hydroxyanthraquinones occurring in Rubia tinctorum L. Poginsky, B., Westendorf, J., Blömeke, B., Marquardt, H., Hewer, A., Grover, P.L., Phillips, D.H. Carcinogenesis (1991) [Pubmed]
  3. Synthesis of [Gly-1]RA-VII, [Gly-2]RA-VII, and [Gly-4]RA-VII. Glycine-containing analogues of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants. Hitotsuyanagi, Y., Hasuda, T., Aihara, T., Ishikawa, H., Yamaguchi, K., Itokawa, H., Takeya, K. J. Org. Chem. (2004) [Pubmed]
  4. Characterization of lucidin formation in Rubia tinctorum L. Nakanishi, F., Nagasawa, Y., Kabaya, Y., Sekimoto, H., Shimomura, K. Plant Physiol. Biochem. (2005) [Pubmed]
  5. Absolute stereostructures of new arborinane-type triterpenoids and inhibitors of nitric oxide production from Rubia yunnanensis. Morikawa, T., Tao, J., Ando, S., Matsuda, H., Yoshikawa, M. J. Nat. Prod. (2003) [Pubmed]
  6. Antiplatelet constituents of formosan Rubia akane. Chung, M.I., Jou, S.J., Cheng, T.H., Lin, C.N., Ko, F.N., Teng, C.M. J. Nat. Prod. (1994) [Pubmed]
  7. Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Itokawa, H., Ibraheim, Z.Z., Qiao, Y.F., Takeya, K. Chem. Pharm. Bull. (1993) [Pubmed]
  8. Protection against Trp-P-2 mutagenicity by purpurin: mechanism of in vitro antimutagenesis. Marczylo, T., Arimoto-Kobayashi, S., Hayatsu, H. Mutagenesis (2000) [Pubmed]
  9. Colitis-related rat colon carcinogenesis induced by 1-hydroxy-anthraquinone and methylazoxymethanol acetate (Review). Tanaka, T., Kohno, H., Murakami, M., Shimada, R., Kagami, S. Oncol. Rep. (2000) [Pubmed]
  10. Biosynthesis of anthraquinones in cell cultures of Cinchona 'Robusta' proceeds via the methylerythritol 4-phosphate pathway. Han, Y.S., Heijden, R., Lefeber, A.W., Erkelens, C., Verpoorte, R. Phytochemistry (2002) [Pubmed]
  11. Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Bulgakov, V.P., Tchernoded, G.K., Mischenko, N.P., Shkryl, Y.N., Glazunov, V.P., Fedoreyev, S.A., Zhuravlev, Y.N. Biochemistry Mosc. (2003) [Pubmed]
  12. Circum-Mediterranean cultural heritage and medicinal plant uses in traditional animal healthcare: a field survey in eight selected areas within the RUBIA project. Pieroni, A., Giusti, M.E., de Pasquale, C., Lenzarini, C., Censorii, E., Gonzáles-Tejero, M.R., Sánchez-Rojas, C.P., Ramiro-Gutiérrez, J.M., Skoula, M., Johnson, C., Sarpaki, A., Della, A., Paraskeva-Hadijchambi, D., Hadjichambis, A., Hmamouchi, M., El-Jorhi, S., El-Demerdash, M., El-Zayat, M., Al-Shahaby, O., Houmani, Z., Scherazed, M. Journal of ethnobiology and ethnomedicine [electronic resource]. (2006) [Pubmed]
  13. Antioxidant and antimicrobial activities of Onosma argentatum and Rubia peregrina. Ozgen, U., Houghton, P.J., Ogundipe, Y., Coşkun, M. Fitoterapia (2003) [Pubmed]
  14. Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars. Derksen, G.C., Lelyveld, G.P., van Beek, T.A., Capelle, A., de Groot, A.E. Phytochemical analysis : PCA. (2004) [Pubmed]
 
WikiGenes - Universities